These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
142 related items for PubMed ID: 29156320
1. Localised sampling of myoelectric activity may provide biased estimates of cocontraction for gastrocnemius though not for soleus and tibialis anterior muscles. Vinti M, Gracies JM, Gazzoni M, Vieira T. J Electromyogr Kinesiol; 2018 Feb; 38():34-43. PubMed ID: 29156320 [Abstract] [Full Text] [Related]
2. Broader Estimates of Gastrocnemius Activity Generated a More Representative Cocontraction Index: A Study in Pediatric Population. Vinti M, Saikia MJ, Donoghue J, Mandigout S, Compagnat M, Kerman KL. IEEE Trans Neural Syst Rehabil Eng; 2023 Feb; 31():4382-4389. PubMed ID: 37910411 [Abstract] [Full Text] [Related]
5. Contributions to the understanding of gait control. Simonsen EB. Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [Abstract] [Full Text] [Related]
9. The medial gastrocnemius muscle attenuates force fluctuations during plantar flexion. Shinohara M, Yoshitake Y, Kouzaki M, Fukunaga T. Exp Brain Res; 2006 Feb; 169(1):15-23. PubMed ID: 16193274 [Abstract] [Full Text] [Related]
10. Comparison of MRI with EMG to study muscle activity associated with dynamic plantar flexion. Price TB, Kamen G, Damon BM, Knight CA, Applegate B, Gore JC, Eward K, Signorile JF. Magn Reson Imaging; 2003 Oct; 21(8):853-61. PubMed ID: 14599535 [Abstract] [Full Text] [Related]
12. Electromyographic patterns of lower limb muscles during apprehensive gait in younger and older female adults. Hallal CZ, Marques NR, Spinoso DH, Vieira ER, Gonçalves M. J Electromyogr Kinesiol; 2013 Oct; 23(5):1145-9. PubMed ID: 23880233 [Abstract] [Full Text] [Related]
13. Spectral characterization of human leg EMG signals from an open access dataset for the development of computational models. de Freitas RM, Kohn AF. PLoS One; 2024 Oct; 19(4):e0302632. PubMed ID: 38683859 [Abstract] [Full Text] [Related]
15. Stretch-sensitive paresis and effort perception in hemiparesis. Vinti M, Bayle N, Hutin E, Burke D, Gracies JM. J Neural Transm (Vienna); 2015 Aug; 122(8):1089-97. PubMed ID: 25702036 [Abstract] [Full Text] [Related]
17. Does the activity of ankle plantar flexors differ between limbs while healthy, young subjects stand at ease? Dos Anjos FV, Gazzoni M, Vieira TM. J Biomech; 2018 Nov 16; 81():140-144. PubMed ID: 30301550 [Abstract] [Full Text] [Related]
18. Task-specific depression of the soleus H-reflex after cocontraction training of antagonistic ankle muscles. Perez MA, Lundbye-Jensen J, Nielsen JB. J Neurophysiol; 2007 Dec 16; 98(6):3677-87. PubMed ID: 17942616 [Abstract] [Full Text] [Related]
19. The force-velocity relationship of the human soleus muscle during submaximal voluntary lengthening actions. Pinniger GJ, Steele JR, Cresswell AG. Eur J Appl Physiol; 2003 Sep 16; 90(1-2):191-8. PubMed ID: 14504953 [Abstract] [Full Text] [Related]
20. Effect of contraction force and knee joint angle on the spatial representation of soleus activity using high-density surface EMG. Reffad A, Mebarkia K, Vieira TM, Disselhorst-Klug C. Biomed Tech (Berl); 2014 Oct 16; 59(5):399-411. PubMed ID: 24762636 [Abstract] [Full Text] [Related] Page: [Next] [New Search]