These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


276 related items for PubMed ID: 29159501

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Quantitative Detection of the Disappearance of the Antioxidant Ability of Catechin by Near-Infrared Absorption and Near-Infrared Photoluminescence Spectra of Single-Walled Carbon Nanotubes.
    Umemura K, Ishibashi Y, Ito M, Homma Y.
    ACS Omega; 2019 Apr 30; 4(4):7750-7758. PubMed ID: 31459864
    [Abstract] [Full Text] [Related]

  • 31. Probing the Influence of Amino Acids on Photoluminescence from Carbon Nanotubes Suspended with DNA.
    Kurnosov NV, Leontiev VS, Karachevtsev VA.
    J Fluoresc; 2016 Nov 30; 26(6):1951-1958. PubMed ID: 27484983
    [Abstract] [Full Text] [Related]

  • 32. Photoluminescence Dynamics Defined by Exciton Trapping Potential of Coupled Defect States in DNA-Functionalized Carbon Nanotubes.
    Zheng Y, Weight BM, Jones AC, Chandrasekaran V, Gifford BJ, Tretiak S, Doorn SK, Htoon H.
    ACS Nano; 2021 Jan 26; 15(1):923-933. PubMed ID: 33395262
    [Abstract] [Full Text] [Related]

  • 33. Distinguishing Antioxidant Molecules with Near-Infrared Photoluminescence of DNA-Wrapped Single-Walled Carbon Nanotubes.
    Lin NS, Kitamura M, Saito M, Hirayama K, Ide Y, Umemura K.
    ACS Omega; 2022 Aug 23; 7(33):28896-28903. PubMed ID: 36033714
    [Abstract] [Full Text] [Related]

  • 34. Controllable redox reaction of chemically purified DNA-single walled carbon nanotube hybrids with hydrogen peroxide.
    Xu Y, Pehrsson PE, Chen L, Zhao W.
    J Am Chem Soc; 2008 Aug 06; 130(31):10054-5. PubMed ID: 18611008
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. DNA sequence detection based on Raman spectroscopy using single walled carbon nanotube.
    Bansal J, Singh I, Bhatnagar PK, Mathur PC.
    J Biosci Bioeng; 2013 Apr 06; 115(4):438-41. PubMed ID: 23207369
    [Abstract] [Full Text] [Related]

  • 37. Dissociation of single-strand DNA: single-walled carbon nanotube hybrids by Watson-Crick base-pairing.
    Jung S, Cha M, Park J, Jeong N, Kim G, Park C, Ihm J, Lee J.
    J Am Chem Soc; 2010 Aug 18; 132(32):10964-6. PubMed ID: 20666356
    [Abstract] [Full Text] [Related]

  • 38. pH-Sensitive photoinduced energy transfer from bacteriorhodopsin to single-walled carbon nanotubes in SWNT-bR hybrids.
    El Hadj K, Bertoncini P, Chauvet O.
    ACS Nano; 2013 Oct 22; 7(10):8743-52. PubMed ID: 24011351
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.