These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


214 related items for PubMed ID: 29160706

  • 1. Synthesis and Characterization of Ultralow Fouling Poly(N-acryloyl-glycinamide) Brushes.
    Yang F, Liu Y, Zhang Y, Ren B, Xu J, Zheng J.
    Langmuir; 2017 Dec 12; 33(49):13964-13972. PubMed ID: 29160706
    [Abstract] [Full Text] [Related]

  • 2. Synthesis and characterization of antifouling poly(N-acryloylaminoethoxyethanol) with ultralow protein adsorption and cell attachment.
    Chen H, Zhang M, Yang J, Zhao C, Hu R, Chen Q, Chang Y, Zheng J.
    Langmuir; 2014 Sep 02; 30(34):10398-409. PubMed ID: 25127733
    [Abstract] [Full Text] [Related]

  • 3. Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces.
    Zhao C, Li L, Wang Q, Yu Q, Zheng J.
    Langmuir; 2011 Apr 19; 27(8):4906-13. PubMed ID: 21405141
    [Abstract] [Full Text] [Related]

  • 4. Probing the structural dependence of carbon space lengths of poly(N-hydroxyalkyl acrylamide)-based brushes on antifouling performance.
    Yang J, Zhang M, Chen H, Chang Y, Chen Z, Zheng J.
    Biomacromolecules; 2014 Aug 11; 15(8):2982-91. PubMed ID: 24964712
    [Abstract] [Full Text] [Related]

  • 5. Micro- and macroscopically structured zwitterionic polymers with ultralow fouling property.
    Zhang D, Ren B, Zhang Y, Liu Y, Chen H, Xiao S, Chang Y, Yang J, Zheng J.
    J Colloid Interface Sci; 2020 Oct 15; 578():242-253. PubMed ID: 32531554
    [Abstract] [Full Text] [Related]

  • 6. Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ.
    Leng C, Sun S, Zhang K, Jiang S, Chen Z.
    Acta Biomater; 2016 Aug 15; 40():6-15. PubMed ID: 26923530
    [Abstract] [Full Text] [Related]

  • 7. Probing structure-antifouling activity relationships of polyacrylamides and polyacrylates.
    Zhao C, Zhao J, Li X, Wu J, Chen S, Chen Q, Wang Q, Gong X, Li L, Zheng J.
    Biomaterials; 2013 Jul 15; 34(20):4714-24. PubMed ID: 23562049
    [Abstract] [Full Text] [Related]

  • 8. Ultralow fouling polyacrylamide on gold surfaces via surface-initiated atom transfer radical polymerization.
    Liu Q, Singh A, Lalani R, Liu L.
    Biomacromolecules; 2012 Apr 09; 13(4):1086-92. PubMed ID: 22385371
    [Abstract] [Full Text] [Related]

  • 9. Molecular Understanding and Structural-Based Design of Polyacrylamides and Polyacrylates as Antifouling Materials.
    Chen H, Zhao C, Zhang M, Chen Q, Ma J, Zheng J.
    Langmuir; 2016 Apr 12; 32(14):3315-30. PubMed ID: 26986442
    [Abstract] [Full Text] [Related]

  • 10. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties.
    Jin X, Yuan J, Shen J.
    Colloids Surf B Biointerfaces; 2016 Sep 01; 145():275-284. PubMed ID: 27208441
    [Abstract] [Full Text] [Related]

  • 11. Hydration and chain entanglement determines the optimum thickness of poly(HEMA-co-PEG₁₀MA) brushes for effective resistance to settlement and adhesion of marine fouling organisms.
    Yandi W, Mieszkin S, Martin-Tanchereau P, Callow ME, Callow JA, Tyson L, Liedberg B, Ederth T.
    ACS Appl Mater Interfaces; 2014 Jul 23; 6(14):11448-58. PubMed ID: 24945705
    [Abstract] [Full Text] [Related]

  • 12. Enhanced stability of low fouling zwitterionic polymer brushes in seawater with diblock architecture.
    Quintana R, Gosa M, Jańczewski D, Kutnyanszky E, Vancso GJ.
    Langmuir; 2013 Aug 27; 29(34):10859-67. PubMed ID: 23876125
    [Abstract] [Full Text] [Related]

  • 13. Molecular simulations and understanding of antifouling zwitterionic polymer brushes.
    Liu Y, Zhang D, Ren B, Gong X, Xu L, Feng ZQ, Chang Y, He Y, Zheng J.
    J Mater Chem B; 2020 May 06; 8(17):3814-3828. PubMed ID: 32227061
    [Abstract] [Full Text] [Related]

  • 14. Achieving highly effective nonfouling performance for surface-grafted poly(HPMA) via atom-transfer radical polymerization.
    Zhao C, Li L, Zheng J.
    Langmuir; 2010 Nov 16; 26(22):17375-82. PubMed ID: 20942427
    [Abstract] [Full Text] [Related]

  • 15. Salt-Responsive Zwitterionic Polymer Brushes with Tunable Friction and Antifouling Properties.
    Yang J, Chen H, Xiao S, Shen M, Chen F, Fan P, Zhong M, Zheng J.
    Langmuir; 2015 Aug 25; 31(33):9125-33. PubMed ID: 26245712
    [Abstract] [Full Text] [Related]

  • 16. Antifouling Properties of Fluoropolymer Brushes toward Organic Polymers: The Influence of Composition, Thickness, Brush Architecture, and Annealing.
    Wang Z, Zuilhof H.
    Langmuir; 2016 Jul 05; 32(26):6571-81. PubMed ID: 27332543
    [Abstract] [Full Text] [Related]

  • 17. Synthesis and characterization of poly(N-hydroxyethylacrylamide) for long-term antifouling ability.
    Zhao C, Zheng J.
    Biomacromolecules; 2011 Nov 14; 12(11):4071-9. PubMed ID: 21972885
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Antifouling Surfaces Based on Fluorine-Containing Asymmetric Polymer Brushes: Effect of Chain Length of Fluorinated Side Chain.
    Sun X, Wu C, Hu J, Huang X, Lu G, Feng C.
    Langmuir; 2019 Feb 05; 35(5):1235-1241. PubMed ID: 30558426
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.