These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


233 related items for PubMed ID: 29168804

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Superionic iron hydride shapes ultralow-velocity zones at Earth's core-mantle boundary.
    Zhang Y, Wang W, Li Y, Wu Z.
    Proc Natl Acad Sci U S A; 2024 Aug 27; 121(35):e2406386121. PubMed ID: 39163332
    [Abstract] [Full Text] [Related]

  • 4. Origins of ultralow velocity zones through slab-derived metallic melt.
    Liu J, Li J, Hrubiak R, Smith JS.
    Proc Natl Acad Sci U S A; 2016 May 17; 113(20):5547-51. PubMed ID: 27143719
    [Abstract] [Full Text] [Related]

  • 5. Globally distributed subducted materials along the Earth's core-mantle boundary: Implications for ultralow velocity zones.
    Hansen SE, Garnero EJ, Li M, Shim SH, Rost S.
    Sci Adv; 2023 Apr 05; 9(14):eadd4838. PubMed ID: 37018398
    [Abstract] [Full Text] [Related]

  • 6. Extensive iron-water exchange at Earth's core-mantle boundary can explain seismic anomalies.
    Kawano K, Nishi M, Kuwahara H, Kakizawa S, Inoue T, Kondo T.
    Nat Commun; 2024 Oct 15; 15(1):8701. PubMed ID: 39406711
    [Abstract] [Full Text] [Related]

  • 7. Core origin of seismic velocity anomalies at Earth's core-mantle boundary.
    Fu S, Chariton S, Prakapenka VB, Shim SH.
    Nature; 2023 Mar 15; 615(7953):646-651. PubMed ID: 36792829
    [Abstract] [Full Text] [Related]

  • 8. Compositionally-distinct ultra-low velocity zones on Earth's core-mantle boundary.
    Li M, McNamara AK, Garnero EJ, Yu S.
    Nat Commun; 2017 Aug 02; 8(1):177. PubMed ID: 28769033
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Evidence for oxygenation of Fe-Mg oxides at mid-mantle conditions and the rise of deep oxygen.
    Liu J, Wang C, Lv C, Su X, Liu Y, Tang R, Chen J, Hu Q, Mao HK, Mao WL.
    Natl Sci Rev; 2021 Apr 02; 8(4):nwaa096. PubMed ID: 34691604
    [Abstract] [Full Text] [Related]

  • 14. Tracking the origin of ultralow velocity zones at the base of Earth's mantle.
    Chen J.
    Natl Sci Rev; 2021 Apr 02; 8(4):nwaa308. PubMed ID: 34691621
    [Abstract] [Full Text] [Related]

  • 15. Rare Helium-Bearing Compound FeO_{2}He Stabilized at Deep-Earth Conditions.
    Zhang J, Lv J, Li H, Feng X, Lu C, Redfern SAT, Liu H, Chen C, Ma Y.
    Phys Rev Lett; 2018 Dec 21; 121(25):255703. PubMed ID: 30608845
    [Abstract] [Full Text] [Related]

  • 16. Iron-rich silicates in the Earth's D'' layer.
    Mao WL, Meng Y, Shen G, Prakapenka VB, Campbell AJ, Heinz DL, Shu J, Caracas R, Cohen RE, Fei Y, Hemley RJ, Mao HK.
    Proc Natl Acad Sci U S A; 2005 Jul 12; 102(28):9751-3. PubMed ID: 15994226
    [Abstract] [Full Text] [Related]

  • 17. Iron-silica interaction at extreme conditions and the electrically conducting layer at the base of Earth's mantle.
    Dubrovinsky L, Dubrovinskaia N, Langenhorst F, Dobson D, Rubie D, Gessmann C, Abrikosov IA, Johansson B, Baykov VI, Vitos L, Le Bihan T, Crichton WA, Dmitriev V, Weber HP.
    Nature; 2003 Mar 06; 422(6927):58-61. PubMed ID: 12621431
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. The stability of FeHx and hydrogen transport at Earth's core mantle boundary.
    He Y, Kim DY, Struzhkin VV, Geballe ZM, Prakapenka V, Mao HK.
    Sci Bull (Beijing); 2023 Jul 30; 68(14):1567-1573. PubMed ID: 37355390
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.