These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


351 related items for PubMed ID: 29177666

  • 1. Computational Analysis of the Chaperone Interaction Networks.
    Kumar A, Rizzolo K, Zilles S, Babu M, Houry WA.
    Methods Mol Biol; 2018; 1709():275-291. PubMed ID: 29177666
    [Abstract] [Full Text] [Related]

  • 2. Bioinformatic approach to identify chaperone pathway relationship from large-scale interaction networks.
    Gong Y, Zhang Z, Houry WA.
    Methods Mol Biol; 2011; 787():189-203. PubMed ID: 21898237
    [Abstract] [Full Text] [Related]

  • 3. Features of the Chaperone Cellular Network Revealed through Systematic Interaction Mapping.
    Rizzolo K, Huen J, Kumar A, Phanse S, Vlasblom J, Kakihara Y, Zeineddine HA, Minic Z, Snider J, Wang W, Pons C, Seraphim TV, Boczek EE, Alberti S, Costanzo M, Myers CL, Stagljar I, Boone C, Babu M, Houry WA.
    Cell Rep; 2017 Sep 12; 20(11):2735-2748. PubMed ID: 28903051
    [Abstract] [Full Text] [Related]

  • 4. Identifying protein complexes based on node embeddings obtained from protein-protein interaction networks.
    Liu X, Yang Z, Sang S, Zhou Z, Wang L, Zhang Y, Lin H, Wang J, Xu B.
    BMC Bioinformatics; 2018 Sep 21; 19(1):332. PubMed ID: 30241459
    [Abstract] [Full Text] [Related]

  • 5. The Cartographers toolbox: building bigger and better human protein interaction networks.
    Sanderson CM.
    Brief Funct Genomic Proteomic; 2009 Jan 21; 8(1):1-11. PubMed ID: 19282470
    [Abstract] [Full Text] [Related]

  • 6. Computational reconstruction of protein-protein interaction networks: algorithms and issues.
    Franzosa E, Linghu B, Xia Y.
    Methods Mol Biol; 2009 Jan 21; 541():89-100. PubMed ID: 19381528
    [Abstract] [Full Text] [Related]

  • 7. Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae.
    Reguly T, Breitkreutz A, Boucher L, Breitkreutz BJ, Hon GC, Myers CL, Parsons A, Friesen H, Oughtred R, Tong A, Stark C, Ho Y, Botstein D, Andrews B, Boone C, Troyanskya OG, Ideker T, Dolinski K, Batada NN, Tyers M.
    J Biol; 2006 Jan 21; 5(4):11. PubMed ID: 16762047
    [Abstract] [Full Text] [Related]

  • 8. Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone.
    Zhao R, Davey M, Hsu YC, Kaplanek P, Tong A, Parsons AB, Krogan N, Cagney G, Mai D, Greenblatt J, Boone C, Emili A, Houry WA.
    Cell; 2005 Mar 11; 120(5):715-27. PubMed ID: 15766533
    [Abstract] [Full Text] [Related]

  • 9. Discovery of biological networks from diverse functional genomic data.
    Myers CL, Robson D, Wible A, Hibbs MA, Chiriac C, Theesfeld CL, Dolinski K, Troyanskaya OG.
    Genome Biol; 2005 Mar 11; 6(13):R114. PubMed ID: 16420673
    [Abstract] [Full Text] [Related]

  • 10. Interaction networks: lessons from large-scale studies in yeast.
    Cagney G.
    Proteomics; 2009 Oct 11; 9(20):4799-811. PubMed ID: 19743423
    [Abstract] [Full Text] [Related]

  • 11. Identification of essential proteins from weighted protein-protein interaction networks.
    Li M, Wang JX, Wang H, Pan Y.
    J Bioinform Comput Biol; 2013 Jun 11; 11(3):1341002. PubMed ID: 23796179
    [Abstract] [Full Text] [Related]

  • 12. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes.
    Luo J, Qi Y.
    PLoS One; 2015 Jun 11; 10(6):e0131418. PubMed ID: 26125187
    [Abstract] [Full Text] [Related]

  • 13. Molecular Chaperones Accelerate the Evolution of Their Protein Clients in Yeast.
    Alvarez-Ponce D, Aguilar-Rodríguez J, Fares MA.
    Genome Biol Evol; 2019 Aug 01; 11(8):2360-2375. PubMed ID: 31297528
    [Abstract] [Full Text] [Related]

  • 14. Construction of dynamic probabilistic protein interaction networks for protein complex identification.
    Zhang Y, Lin H, Yang Z, Wang J.
    BMC Bioinformatics; 2016 Apr 27; 17(1):186. PubMed ID: 27117946
    [Abstract] [Full Text] [Related]

  • 15. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data.
    Panchy NL, Lloyd JP, Shiu SH.
    BMC Genomics; 2020 Feb 13; 21(1):159. PubMed ID: 32054475
    [Abstract] [Full Text] [Related]

  • 16. AVID: an integrative framework for discovering functional relationships among proteins.
    Jiang T, Keating AE.
    BMC Bioinformatics; 2005 Jun 01; 6():136. PubMed ID: 15929793
    [Abstract] [Full Text] [Related]

  • 17. Explorations in topology-delving underneath the surface of genetic interaction maps.
    Breker M, Schuldiner M.
    Mol Biosyst; 2009 Dec 01; 5(12):1473-81. PubMed ID: 19763324
    [Abstract] [Full Text] [Related]

  • 18. The relative vertex clustering value--a new criterion for the fast discovery of functional modules in protein interaction networks.
    Ibrahim ZM, Ngom A.
    BMC Bioinformatics; 2015 Dec 01; 16 Suppl 4(Suppl 4):S3. PubMed ID: 25734691
    [Abstract] [Full Text] [Related]

  • 19. Social behavior of the yeast protein-protein interaction network.
    Seshasayee AS.
    In Silico Biol; 2006 Dec 01; 6(1-2):127-30. PubMed ID: 16789919
    [Abstract] [Full Text] [Related]

  • 20. Visualization and analysis of the complexome network of Saccharomyces cerevisiae.
    Li SS, Xu K, Wilkins MR.
    J Proteome Res; 2011 Oct 07; 10(10):4744-56. PubMed ID: 21842913
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.