These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1093 related items for PubMed ID: 29177999

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Using dual isotopes to evaluate sources and transformations of nitrate in the West Lake watershed, eastern China.
    Jin Z, Qin X, Chen L, Jin M, Li F.
    J Contam Hydrol; 2015; 177-178():64-75. PubMed ID: 25835546
    [Abstract] [Full Text] [Related]

  • 5. Nitrate sources and biogeochemical processes in karst underground rivers impacted by different anthropogenic input characteristics.
    Yang P, Wang Y, Wu X, Chang L, Ham B, Song L, Groves C.
    Environ Pollut; 2020 Oct; 265(Pt B):114835. PubMed ID: 32540593
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Source and fate of nitrate in contaminated groundwater systems: Assessing spatial and temporal variations by hydrogeochemistry and multiple stable isotope tools.
    Biddau R, Cidu R, Da Pelo S, Carletti A, Ghiglieri G, Pittalis D.
    Sci Total Environ; 2019 Jan 10; 647():1121-1136. PubMed ID: 30180321
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Quantitative identification of nitrate pollution sources and uncertainty analysis based on dual isotope approach in an agricultural watershed.
    Ji X, Xie R, Hao Y, Lu J.
    Environ Pollut; 2017 Oct 10; 229():586-594. PubMed ID: 28689147
    [Abstract] [Full Text] [Related]

  • 15. Shift of nitrate sources in groundwater due to intensive livestock farming on Jeju Island, South Korea: With emphasis on legacy effects on water management.
    Kim SH, Kim HR, Yu S, Kang HJ, Hyun IH, Song YC, Kim H, Yun ST.
    Water Res; 2021 Mar 01; 191():116814. PubMed ID: 33461081
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Tracing nitrate pollution sources and transformations in the over-exploited groundwater region of north China using stable isotopes.
    Zhang Q, Wang H, Wang L.
    J Contam Hydrol; 2018 Nov 01; 218():1-9. PubMed ID: 29935808
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Tracking the nitrogen cycle in a vulnerable alluvial system using a multi proxy approach: Case study Varaždin alluvial aquifer, Croatia.
    Marković T, Karlović I, Orlić S, Kajan K, Smith AC.
    Sci Total Environ; 2022 Dec 20; 853():158632. PubMed ID: 36087668
    [Abstract] [Full Text] [Related]

  • 20. Estimation of nitrate pollution sources and transformations in groundwater of an intensive livestock-agricultural area (Comarca Lagunera), combining major ions, stable isotopes and MixSIAR model.
    Torres-Martínez JA, Mora A, Mahlknecht J, Daesslé LW, Cervantes-Avilés PA, Ledesma-Ruiz R.
    Environ Pollut; 2021 Jan 15; 269():115445. PubMed ID: 33277063
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 55.