These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


210 related items for PubMed ID: 29178810

  • 1. Nanoscale-Agglomerate-Mediated Heterogeneous Nucleation.
    Cha H, Wu A, Kim MK, Saigusa K, Liu A, Miljkovic N.
    Nano Lett; 2017 Dec 13; 17(12):7544-7551. PubMed ID: 29178810
    [Abstract] [Full Text] [Related]

  • 2. Atmosphere-Mediated Superhydrophobicity of Rationally Designed Micro/Nanostructured Surfaces.
    Yan X, Huang Z, Sett S, Oh J, Cha H, Li L, Feng L, Wu Y, Zhao C, Orejon D, Chen F, Miljkovic N.
    ACS Nano; 2019 Apr 23; 13(4):4160-4173. PubMed ID: 30933473
    [Abstract] [Full Text] [Related]

  • 3. Fundamental Limits of the Spatial Control of Heterogeneous Nucleation on Biphilic Surfaces.
    Kim MK, Sett S, Hoque MJ, Kim E, Ahn J, Miljkovic N.
    Langmuir; 2024 Aug 20; 40(33):17767-17778. PubMed ID: 39119907
    [Abstract] [Full Text] [Related]

  • 4. Dropwise condensation: From fundamentals of wetting, nucleation, and droplet mobility to performance improvement by advanced functional surfaces.
    Zheng SF, Gross U, Wang XD.
    Adv Colloid Interface Sci; 2021 Sep 20; 295():102503. PubMed ID: 34411880
    [Abstract] [Full Text] [Related]

  • 5. Biphilic Surfaces with Optimum Hydrophobic Islands on a Superhydrophobic Background for Dropwise Flow Condensation.
    Chehrghani MM, Abbasiasl T, Sadaghiani AK, Koşar A.
    Langmuir; 2021 Nov 23; 37(46):13567-13575. PubMed ID: 34751032
    [Abstract] [Full Text] [Related]

  • 6. Elucidating the Mechanism of Condensation-Mediated Degradation of Organofunctional Silane Self-Assembled Monolayer Coatings.
    Wang R, Jakhar K, Ahmed S, Antao DS.
    ACS Appl Mater Interfaces; 2021 Jul 28; 13(29):34923-34934. PubMed ID: 34264646
    [Abstract] [Full Text] [Related]

  • 7. Dropwise condensation on bioinspired hydrophilic-slippery surface.
    Guo L, Tang GH.
    RSC Adv; 2018 Nov 23; 8(69):39341-39351. PubMed ID: 35558060
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Liquid-Infused Smooth Surface for Improved Condensation Heat Transfer.
    Tsuchiya H, Tenjimbayashi M, Moriya T, Yoshikawa R, Sasaki K, Togasawa R, Yamazaki T, Manabe K, Shiratori S.
    Langmuir; 2017 Sep 12; 33(36):8950-8960. PubMed ID: 28826213
    [Abstract] [Full Text] [Related]

  • 10. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N, Preston DJ, Enright R, Wang EN.
    ACS Nano; 2013 Dec 23; 7(12):11043-54. PubMed ID: 24261667
    [Abstract] [Full Text] [Related]

  • 11. Dewetting from Amphiphilic Minichannel Surfaces during Condensation.
    Winter RL, McCarthy M.
    ACS Appl Mater Interfaces; 2020 Feb 12; 12(6):7815-7825. PubMed ID: 31944655
    [Abstract] [Full Text] [Related]

  • 12. Ultrahigh Subcooling Dropwise Condensation Heat Transfer on Slippery Liquid-like Monolayer Grafted Surfaces.
    Huang TE, Lu Y, Wei Z, Li D, Li QY, Wang Z, Takahashi K, Orejon D, Zhang P.
    ACS Appl Mater Interfaces; 2024 Oct 02; 16(39):53285-53298. PubMed ID: 39295174
    [Abstract] [Full Text] [Related]

  • 13. Tuning nanostructured surfaces with hybrid wettability areas to enhance condensation.
    Gao S, Liu W, Liu Z.
    Nanoscale; 2019 Jan 03; 11(2):459-466. PubMed ID: 30325374
    [Abstract] [Full Text] [Related]

  • 14. Effect of surface free energies on the heterogeneous nucleation of water droplet: a molecular dynamics simulation approach.
    Xu W, Lan Z, Peng BL, Wen RF, Ma XH.
    J Chem Phys; 2015 Feb 07; 142(5):054701. PubMed ID: 25662654
    [Abstract] [Full Text] [Related]

  • 15. Droplet nucleation on a well-defined hydrophilic-hydrophobic surface of 10 nm order resolution.
    Yamada Y, Ikuta T, Nishiyama T, Takahashi K, Takata Y.
    Langmuir; 2014 Dec 09; 30(48):14532-7. PubMed ID: 25385673
    [Abstract] [Full Text] [Related]

  • 16. Impact of air and water vapor environments on the hydrophobicity of surfaces.
    Weisensee PB, Neelakantan NK, Suslick KS, Jacobi AM, King WP.
    J Colloid Interface Sci; 2015 Sep 01; 453():177-185. PubMed ID: 25985421
    [Abstract] [Full Text] [Related]

  • 17. Preferential Vapor Nucleation on Hierarchical Tapered Nanowire Bunches.
    Du B, Cheng Y, Yang S, Xu W, Lan Z, Wen R, Ma X.
    Langmuir; 2021 Jan 19; 37(2):774-784. PubMed ID: 33382946
    [Abstract] [Full Text] [Related]

  • 18. Depletion of Lubricant from Nanostructured Oil-Infused Surfaces by Pendant Condensate Droplets.
    Adera S, Alvarenga J, Shneidman AV, Zhang CT, Davitt A, Aizenberg J.
    ACS Nano; 2020 Jul 28; 14(7):8024-8035. PubMed ID: 32490664
    [Abstract] [Full Text] [Related]

  • 19. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N, Enright R, Wang EN.
    ACS Nano; 2012 Feb 28; 6(2):1776-85. PubMed ID: 22293016
    [Abstract] [Full Text] [Related]

  • 20. Lattice Boltzmann Modeling of Condensation Heat Transfer on Downward-Facing Surfaces with Different Wettabilities.
    Wang X, Xu B, Chen Z, Yang Y, Cao Q.
    Langmuir; 2020 Aug 11; 36(31):9204-9214. PubMed ID: 32660253
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.