These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
166 related items for PubMed ID: 29183349
21. Antioxidants inhibition of high plasma androgenic markers in the pathogenesis of ethylene glycol (EG)-induced nephrolithiasis in Wistar rats. Naghii MR, Mofid M, Hedayati M, Khalagi K. Urolithiasis; 2014 Apr; 42(2):97-103. PubMed ID: 24202300 [Abstract] [Full Text] [Related]
22. High sucrose diet induces morphological, structural and functional impairments in the renal tubules of Drosophila melanogaster: A model for studying type-2 diabetes mediated renal tubular dysfunction. Rani L, Saini S, Shukla N, Chowdhuri DK, Gautam NK. Insect Biochem Mol Biol; 2020 Oct; 125():103441. PubMed ID: 32735915 [Abstract] [Full Text] [Related]
23. Effects of commercial citrate-containing juices on urolithiasis in a Drosophila model. Ho CY, Chen YH, Wu PY, Chang CH, Chen HY, Man KM, Shen JL, Tsai FJ, Lin WY, Lee YJ, Chen WC. Kaohsiung J Med Sci; 2013 Sep; 29(9):488-93. PubMed ID: 24018152 [Abstract] [Full Text] [Related]
24. Inhibition of Autophagy Attenuated Ethylene Glycol Induced Crystals Deposition and Renal Injury in a Rat Model of Nephrolithiasis. Liu Y, Liu Q, Wang X, He Z, Li D, Guan X, Tao Z, Deng Y. Kidney Blood Press Res; 2018 Sep; 43(1):246-255. PubMed ID: 29490299 [Abstract] [Full Text] [Related]
25. Antioxidant therapy prevents ethylene glycol-induced renal calcium oxalate crystal deposition in Wistar rats. Naghii MR, Eskandari E, Mofid M, Jafari M, Asadi MH. Int Urol Nephrol; 2014 Jun; 46(6):1231-8. PubMed ID: 24554217 [Abstract] [Full Text] [Related]
26. Drosophila: a fruitful model for calcium oxalate nephrolithiasis? Knauf F, Preisig PA. Kidney Int; 2011 Aug; 80(4):327-9. PubMed ID: 21799502 [Abstract] [Full Text] [Related]
27. The Drosophila Malpighian tubule as a model for mammalian tubule function. Rodan AR. Curr Opin Nephrol Hypertens; 2019 Sep; 28(5):455-464. PubMed ID: 31268918 [Abstract] [Full Text] [Related]
28. Nephrolithiasis: molecular mechanism of renal stone formation and the critical role played by modulators. Aggarwal KP, Narula S, Kakkar M, Tandon C. Biomed Res Int; 2013 Sep; 2013():292953. PubMed ID: 24151593 [Abstract] [Full Text] [Related]
29. Transcriptional study of hyperoxaluria and calcium oxalate nephrolithiasis in male rats: Inflammatory changes are mainly associated with crystal deposition. Joshi S, Wang W, Khan SR. PLoS One; 2017 Sep; 12(11):e0185009. PubMed ID: 29091707 [Abstract] [Full Text] [Related]
30. Antiurolithic effects of medicinal plants: results of in vivo studies in rat models of calcium oxalate nephrolithiasis-a systematic review. Khan A, Bashir S, Khan SR. Urolithiasis; 2021 Apr; 49(2):95-122. PubMed ID: 33484322 [Abstract] [Full Text] [Related]
32. Metabolic syndrome contributes to renal injury mediated by hyperoxaluria in a murine model of nephrolithiasis. Sáenz-Medina J, Jorge E, Corbacho C, Santos M, Sánchez A, Soblechero P, Virumbrales E, Ramil E, Coronado MJ, Castillón I, Prieto D, Carballido J. Urolithiasis; 2018 Apr 18; 46(2):179-186. PubMed ID: 28405703 [Abstract] [Full Text] [Related]
33. Association of sirtuin 1 gene polymorphisms with nephrolithiasis in Eastern chinese population. Hou J, Ding J, Li L, Peng Y, Gao X, Guo Z. Ren Fail; 2019 Nov 18; 41(1):34-41. PubMed ID: 30714469 [Abstract] [Full Text] [Related]
34. Sulfate and thiosulfate inhibit oxalate transport via a dPrestin (Slc26a6)-dependent mechanism in an insect model of calcium oxalate nephrolithiasis. Landry GM, Hirata T, Anderson JB, Cabrero P, Gallo CJ, Dow JA, Romero MF. Am J Physiol Renal Physiol; 2016 Jan 15; 310(2):F152-9. PubMed ID: 26538444 [Abstract] [Full Text] [Related]
35. Sodium dicarboxylate cotransporter-1 expression in renal tissues and its role in rat experimental nephrolithiasis. He Y, Chen X, Yu Z, Wu D, Lv Y, Shi S, Zhu H. J Nephrol; 2004 Jan 15; 17(1):34-42. PubMed ID: 15151257 [Abstract] [Full Text] [Related]
36. Dietary treatment of urinary risk factors for renal stone formation. A review of CLU Working Group. Prezioso D, Strazzullo P, Lotti T, Bianchi G, Borghi L, Caione P, Carini M, Caudarella R, Ferraro M, Gambaro G, Gelosa M, Guttilla A, Illiano E, Martino M, Meschi T, Messa P, Miano R, Napodano G, Nouvenne A, Rendina D, Rocco F, Rosa M, Sanseverino R, Salerno A, Spatafora S, Tasca A, Ticinesi A, Travaglini F, Trinchieri A, Vespasiani G, Zattoni F, CLU Working Group. Arch Ital Urol Androl; 2015 Jul 07; 87(2):105-20. PubMed ID: 26150027 [Abstract] [Full Text] [Related]
37. A pilot dynamic analysis of formative factors of nephrolithiasis related to metabolic syndrome: evidence in a rat model. He Q, Tang Y, Li Y, Wang F, Bao J, Gupta S. Ren Fail; 2022 Dec 07; 44(1):1134-1143. PubMed ID: 35837686 [Abstract] [Full Text] [Related]
38. LncRNA-miRNA-mRNA expression variation profile in the urine of calcium oxalate stone patients. Liang X, Lai Y, Wu W, Chen D, Zhong F, Huang J, Zeng T, Duan X, Huang Y, Zhang S, Li S, Wu W. BMC Med Genomics; 2019 Apr 29; 12(1):57. PubMed ID: 31036010 [Abstract] [Full Text] [Related]
40. Oxygen nano-bubble water reduces calcium oxalate deposits and tubular cell injury in ethylene glycol-treated rat kidney. Hirose Y, Yasui T, Taguchi K, Fujii Y, Niimi K, Hamamoto S, Okada A, Kubota Y, Kawai N, Itoh Y, Tozawa K, Sasaki S, Kohri K. Urolithiasis; 2013 Aug 29; 41(4):279-94. PubMed ID: 23754513 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]