These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
237 related items for PubMed ID: 29186616
1. JUNB governs a feed-forward network of TGFβ signaling that aggravates breast cancer invasion. Sundqvist A, Morikawa M, Ren J, Vasilaki E, Kawasaki N, Kobayashi M, Koinuma D, Aburatani H, Miyazono K, Heldin CH, van Dam H, Ten Dijke P. Nucleic Acids Res; 2018 Feb 16; 46(3):1180-1195. PubMed ID: 29186616 [Abstract] [Full Text] [Related]
2. TGFβ and EGF signaling orchestrates the AP-1- and p63 transcriptional regulation of breast cancer invasiveness. Sundqvist A, Vasilaki E, Voytyuk O, Bai Y, Morikawa M, Moustakas A, Miyazono K, Heldin CH, Ten Dijke P, van Dam H. Oncogene; 2020 May 16; 39(22):4436-4449. PubMed ID: 32350443 [Abstract] [Full Text] [Related]
3. Specific interactions between Smad proteins and AP-1 components determine TGFβ-induced breast cancer cell invasion. Sundqvist A, Zieba A, Vasilaki E, Herrera Hidalgo C, Söderberg O, Koinuma D, Miyazono K, Heldin CH, Landegren U, Ten Dijke P, van Dam H. Oncogene; 2013 Aug 01; 32(31):3606-15. PubMed ID: 22926518 [Abstract] [Full Text] [Related]
4. The transcription factor GLI1 interacts with SMAD proteins to modulate transforming growth factor β-induced gene expression in a p300/CREB-binding protein-associated factor (PCAF)-dependent manner. Nye MD, Almada LL, Fernandez-Barrena MG, Marks DL, Elsawa SF, Vrabel A, Tolosa EJ, Ellenrieder V, Fernandez-Zapico ME. J Biol Chem; 2014 May 30; 289(22):15495-506. PubMed ID: 24739390 [Abstract] [Full Text] [Related]
5. Novel regulation of vascular endothelial growth factor-A (VEGF-A) by transforming growth factor (beta)1: requirement for Smads, (beta)-CATENIN, AND GSK3(beta). Clifford RL, Deacon K, Knox AJ. J Biol Chem; 2008 Dec 19; 283(51):35337-53. PubMed ID: 18952601 [Abstract] [Full Text] [Related]
6. The transcriptional regulators TAZ and YAP direct transforming growth factor β-induced tumorigenic phenotypes in breast cancer cells. Hiemer SE, Szymaniak AD, Varelas X. J Biol Chem; 2014 May 09; 289(19):13461-74. PubMed ID: 24648515 [Abstract] [Full Text] [Related]
7. GATA3 transcription factor abrogates Smad4 transcription factor-mediated fascin overexpression, invadopodium formation, and breast cancer cell invasion. Sun J, He H, Pillai S, Xiong Y, Challa S, Xu L, Chellappan S, Yang S. J Biol Chem; 2013 Dec 27; 288(52):36971-82. PubMed ID: 24235142 [Abstract] [Full Text] [Related]
8. ΔNp63 bookmarks and creates an accessible epigenetic environment for TGFβ-induced cancer cell stemness and invasiveness. Vasilaki E, Bai Y, Ali MM, Sundqvist A, Moustakas A, Heldin CH. Cell Commun Signal; 2024 Aug 23; 22(1):411. PubMed ID: 39180088 [Abstract] [Full Text] [Related]
9. A novel function for p21Cip1 and acetyltransferase p/CAF as critical transcriptional regulators of TGFβ-mediated breast cancer cell migration and invasion. Dai M, Al-Odaini AA, Arakelian A, Rabbani SA, Ali S, Lebrun JJ. Breast Cancer Res; 2012 Sep 20; 14(5):R127. PubMed ID: 22995475 [Abstract] [Full Text] [Related]
10. Transcriptional regulation of SM22alpha by Wnt3a: convergence with TGFbeta(1)/Smad signaling at a novel regulatory element. Shafer SL, Towler DA. J Mol Cell Cardiol; 2009 May 20; 46(5):621-35. PubMed ID: 19344627 [Abstract] [Full Text] [Related]
11. Long Noncoding RNA ELIT-1 Acts as a Smad3 Cofactor to Facilitate TGFβ/Smad Signaling and Promote Epithelial-Mesenchymal Transition. Sakai S, Ohhata T, Kitagawa K, Uchida C, Aoshima T, Niida H, Suzuki T, Inoue Y, Miyazawa K, Kitagawa M. Cancer Res; 2019 Jun 01; 79(11):2821-2838. PubMed ID: 30952633 [Abstract] [Full Text] [Related]
12. The oncogenic TBX3 is a downstream target and mediator of the TGF-β1 signaling pathway. Li J, Weinberg MS, Zerbini L, Prince S. Mol Biol Cell; 2013 Nov 01; 24(22):3569-76. PubMed ID: 24025717 [Abstract] [Full Text] [Related]
13. Smad3 is a key nonredundant mediator of transforming growth factor beta signaling in Nme mouse mammary epithelial cells. Dzwonek J, Preobrazhenska O, Cazzola S, Conidi A, Schellens A, van Dinther M, Stubbs A, Klippel A, Huylebroeck D, ten Dijke P, Verschueren K. Mol Cancer Res; 2009 Aug 01; 7(8):1342-53. PubMed ID: 19671686 [Abstract] [Full Text] [Related]
14. Convergence of p53 and transforming growth factor beta (TGFbeta) signaling on activating expression of the tumor suppressor gene maspin in mammary epithelial cells. Wang SE, Narasanna A, Whitell CW, Wu FY, Friedman DB, Arteaga CL. J Biol Chem; 2007 Feb 23; 282(8):5661-9. PubMed ID: 17204482 [Abstract] [Full Text] [Related]
15. The differential role of Smad2 and Smad3 in the regulation of pro-fibrotic TGFbeta1 responses in human proximal-tubule epithelial cells. Phanish MK, Wahab NA, Colville-Nash P, Hendry BM, Dockrell ME. Biochem J; 2006 Jan 15; 393(Pt 2):601-7. PubMed ID: 16253118 [Abstract] [Full Text] [Related]
16. Upregulation of microRNA-574-3p in a human gastric cancer cell line AGS by TGF-β1. Zhang R, Wang M, Sui P, Ding L, Yang Q. Gene; 2017 Mar 20; 605():63-69. PubMed ID: 28042090 [Abstract] [Full Text] [Related]
17. Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-beta and wnt pathways. Labbé E, Letamendia A, Attisano L. Proc Natl Acad Sci U S A; 2000 Jul 18; 97(15):8358-63. PubMed ID: 10890911 [Abstract] [Full Text] [Related]
18. The DNA binding activities of Smad2 and Smad3 are regulated by coactivator-mediated acetylation. Simonsson M, Kanduri M, Grönroos E, Heldin CH, Ericsson J. J Biol Chem; 2006 Dec 29; 281(52):39870-80. PubMed ID: 17074756 [Abstract] [Full Text] [Related]
19. A role of TGFß1 dependent 14-3-3σ phosphorylation at Ser69 and Ser74 in the regulation of gene transcription, stemness and radioresistance. Zakharchenko O, Cojoc M, Dubrovska A, Souchelnytskyi S. PLoS One; 2013 Dec 29; 8(5):e65163. PubMed ID: 23741479 [Abstract] [Full Text] [Related]
20. Interleukin 1 β-induced SMAD2/3 linker modifications are TAK1 dependent and delay TGFβ signaling in primary human mesenchymal stem cells. van den Akker GG, van Beuningen HM, Vitters EL, Koenders MI, van de Loo FA, van Lent PL, Blaney Davidson EN, van der Kraan PM. Cell Signal; 2017 Dec 29; 40():190-199. PubMed ID: 28943409 [Abstract] [Full Text] [Related] Page: [Next] [New Search]