These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
402 related items for PubMed ID: 29195715
21. Rapid screening test for detection of oxytetracycline residues in milk using lateral flow assay. Naik L, Sharma R, Mann B, Lata K, Rajput YS, Surendra Nath B. Food Chem; 2017 Mar 15; 219():85-92. PubMed ID: 27765263 [Abstract] [Full Text] [Related]
22. Ultrasensitive and quantitative detection of a new β-agonist phenylethanolamine A by a novel immunochromatographic assay based on surface-enhanced Raman scattering (SERS). Li M, Yang H, Li S, Zhao K, Li J, Jiang D, Sun L, Deng A. J Agric Food Chem; 2014 Nov 12; 62(45):10896-902. PubMed ID: 25343225 [Abstract] [Full Text] [Related]
23. Duplex Surface Enhanced Raman Scattering-Based Lateral Flow Immunosensor for the Low-Level Detection of Antibiotic Residues in Milk. Fan R, Tang S, Luo S, Liu H, Zhang W, Yang C, He L, Chen Y. Molecules; 2020 Nov 11; 25(22):. PubMed ID: 33187181 [Abstract] [Full Text] [Related]
25. Gold nanostars-enhanced Raman fingerprint strip for rapid detection of trace tetracycline in water samples. Qian J, Xing C, Ge Y, Li R, Li A, Yan W. Spectrochim Acta A Mol Biomol Spectrosc; 2020 May 05; 232():118146. PubMed ID: 32086043 [Abstract] [Full Text] [Related]
28. Visual and fluorometric lateral flow immunoassay combined with a dual-functional test mode for rapid determination of tetracycline antibiotics. Sheng W, Chang Q, Shi Y, Duan W, Zhang Y, Wang S. Mikrochim Acta; 2018 Aug 07; 185(9):404. PubMed ID: 30088104 [Abstract] [Full Text] [Related]
29. Ultrasensitive and selective detection of sulfamethazine in milk via a Janus-labeled Au nanoparticle-based surface-enhanced Raman scattering-immunochromatographic assay. Wang Y, Zou M, Chen Y, Tang F, Dai J, Jin Y, Wang C, Xue F. Talanta; 2024 Jan 15; 267():125208. PubMed ID: 37717540 [Abstract] [Full Text] [Related]
32. Accelerated surface-enhanced Raman spectroscopy (SERS)-based immunoassay on a gold-plated membrane. Penn MA, Drake DM, Driskell JD. Anal Chem; 2013 Sep 17; 85(18):8609-17. PubMed ID: 23972208 [Abstract] [Full Text] [Related]
33. Gold immunochromatographic strip assay for the detection of triamcinolone acetonide and budesonide in milk. Chao M, Xu X, Wu A, Song S, Kuang H, Xu C, Liu L. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2022 Sep 17; 39(9):1531-1543. PubMed ID: 35867536 [Abstract] [Full Text] [Related]
35. Magnetic bead and gold nanoparticle probes based immunoassay for β-casein detection in bovine milk samples. Li YS, Meng XY, Zhou Y, Zhang YY, Meng XM, Yang L, Hu P, Lu SY, Ren HL, Liu ZS, Wang XR. Biosens Bioelectron; 2015 Apr 15; 66():559-64. PubMed ID: 25522084 [Abstract] [Full Text] [Related]
37. Synthesis of AgcoreAushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy. Cui Y, Ren B, Yao JL, Gu RA, Tian ZQ. J Phys Chem B; 2006 Mar 09; 110(9):4002-6. PubMed ID: 16509689 [Abstract] [Full Text] [Related]
38. Monoclonal antibody-based ELISA and colloidal gold immunoassay for detecting 19-nortestosterone residue in animal tissues. Jiang J, Wang Z, Zhang H, Zhang X, Liu X, Wang S. J Agric Food Chem; 2011 Sep 28; 59(18):9763-9. PubMed ID: 21854067 [Abstract] [Full Text] [Related]
39. A novel biosensor based on competitive SERS immunoassay and magnetic separation for accurate and sensitive detection of chloramphenicol. Yang K, Hu Y, Dong N. Biosens Bioelectron; 2016 Jun 15; 80():373-377. PubMed ID: 26866562 [Abstract] [Full Text] [Related]
40. The development of lateral flow immunoassay strip tests based on surface enhanced Raman spectroscopy coupled with gold nanoparticles for the rapid detection of soybean allergen β-conglycinin. Xi J, Yu Q. Spectrochim Acta A Mol Biomol Spectrosc; 2020 Nov 05; 241():118640. PubMed ID: 32659701 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]