These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Engineering of Saccharomyces cerevisiae for the production of (+)-ambrein. Moser S, Leitner E, Plocek TJ, Vanhessche K, Pichler H. Yeast; 2020 Jan; 37(1):163-172. PubMed ID: 31606910 [Abstract] [Full Text] [Related]
3. Whole-cell (+)-ambrein production in the yeast Pichia pastoris. Moser S, Strohmeier GA, Leitner E, Plocek TJ, Vanhessche K, Pichler H. Metab Eng Commun; 2018 Dec; 7():e00077. PubMed ID: 30197866 [Abstract] [Full Text] [Related]
5. Cyclization of squalene from both termini: identification of an onoceroid synthase and enzymatic synthesis of ambrein. Ueda D, Hoshino T, Sato T. J Am Chem Soc; 2013 Dec 11; 135(49):18335-8. PubMed ID: 24274794 [Abstract] [Full Text] [Related]
6. Biosynthesis of ambrein in ambergris: evidence from isotopic data and identification of possible intermediates. Rowland SJ, Sutton PA, Wolff GA. Nat Prod Res; 2021 Apr 11; 35(8):1235-1241. PubMed ID: 31359775 [Abstract] [Full Text] [Related]
7. Heterologous biosynthesis of triterpenoid dammarenediol-II in engineered Escherichia coli. Li D, Zhang Q, Zhou Z, Zhao F, Lu W. Biotechnol Lett; 2016 Apr 11; 38(4):603-9. PubMed ID: 26739962 [Abstract] [Full Text] [Related]
8. Analysis of vitamin D receptor binding affinities of enzymatically synthesized triterpenes including ambrein and unnatural onoceroids. Ueda D, Matsuda N, Takaba Y, Hirai N, Inoue M, Kameya T, Abe T, Tagaya N, Isogai Y, Kakihara Y, Bartels F, Christmann M, Shinada T, Yasuda K, Sato T. Sci Rep; 2024 Jan 16; 14(1):1419. PubMed ID: 38228813 [Abstract] [Full Text] [Related]
9. Construction of an artificial system for ambrein biosynthesis and investigation of some biological activities of ambrein. Yamabe Y, Kawagoe Y, Okuno K, Inoue M, Chikaoka K, Ueda D, Tajima Y, Yamada TK, Kakihara Y, Hara T, Sato T. Sci Rep; 2020 Nov 12; 10(1):19643. PubMed ID: 33184314 [Abstract] [Full Text] [Related]
10. Pathway engineering for the production of β-amyrin and cycloartenol in Escherichia coli-a method to biosynthesize plant-derived triterpene skeletons in E. coli. Takemura M, Tanaka R, Misawa N. Appl Microbiol Biotechnol; 2017 Sep 12; 101(17):6615-6625. PubMed ID: 28710558 [Abstract] [Full Text] [Related]
15. Production of squalene by microbes: an update. Xu W, Ma X, Wang Y. World J Microbiol Biotechnol; 2016 Dec 12; 32(12):195. PubMed ID: 27730499 [Abstract] [Full Text] [Related]
16. Co-culture engineering for microbial biosynthesis of 3-amino-benzoic acid in Escherichia coli. Zhang H, Stephanopoulos G. Biotechnol J; 2016 Jul 12; 11(7):981-7. PubMed ID: 27168529 [Abstract] [Full Text] [Related]
17. Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophan at high concentration. Chen L, Zeng AP. Appl Microbiol Biotechnol; 2017 Jan 12; 101(2):559-568. PubMed ID: 27599980 [Abstract] [Full Text] [Related]
18. Combinatorial Engineering of Mevalonate Pathway and Diterpenoid Synthases in Escherichia coli for cis-Abienol Production. Li L, Wang X, Li X, Shi H, Wang F, Zhang Y, Li X. J Agric Food Chem; 2019 Jun 12; 67(23):6523-6531. PubMed ID: 31117507 [Abstract] [Full Text] [Related]
19. Production of squalene by squalene synthases and their truncated mutants in Escherichia coli. Katabami A, Li L, Iwasaki M, Furubayashi M, Saito K, Umeno D. J Biosci Bioeng; 2015 Feb 12; 119(2):165-71. PubMed ID: 25282635 [Abstract] [Full Text] [Related]