These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
321 related items for PubMed ID: 29208990
1. Comparative transcriptomic analysis of Tibetan Gynaephora to explore the genetic basis of insect adaptation to divergent altitude environments. Zhang QL, Zhang L, Yang XZ, Wang XT, Li XP, Wang J, Chen JY, Yuan ML. Sci Rep; 2017 Dec 05; 7(1):16972. PubMed ID: 29208990 [Abstract] [Full Text] [Related]
2. Mitochondrial phylogeny, divergence history and high-altitude adaptation of grassland caterpillars (Lepidoptera: Lymantriinae: Gynaephora) inhabiting the Tibetan Plateau. Yuan ML, Zhang QL, Zhang L, Jia CL, Li XP, Yang XZ, Feng RQ. Mol Phylogenet Evol; 2018 May 05; 122():116-124. PubMed ID: 29408286 [Abstract] [Full Text] [Related]
3. Gene sequence variations and expression patterns of mitochondrial genes are associated with the adaptive evolution of two Gynaephora species (Lepidoptera: Lymantriinae) living in different high-elevation environments. Zhang QL, Zhang L, Zhao TX, Wang J, Zhu QH, Chen JY, Yuan ML. Gene; 2017 Apr 30; 610():148-155. PubMed ID: 28188868 [Abstract] [Full Text] [Related]
4. Evidence for Adaptation to the Tibetan Plateau Inferred from Tibetan Loach Transcriptomes. Wang Y, Yang L, Zhou K, Zhang Y, Song Z, He S. Genome Biol Evol; 2015 Oct 09; 7(11):2970-82. PubMed ID: 26454018 [Abstract] [Full Text] [Related]
5. Selection of reference genes for qRT-PCR and expression analysis of high-altitude-related genes in grassland caterpillars (Lepidoptera: Erebidae: Gynaephora) along an altitude gradient. Zhang L, Zhang QL, Wang XT, Yang XZ, Li XP, Yuan ML. Ecol Evol; 2017 Nov 09; 7(21):9054-9065. PubMed ID: 29152197 [Abstract] [Full Text] [Related]
7. Genome Resequencing Identifies Unique Adaptations of Tibetan Chickens to Hypoxia and High-Dose Ultraviolet Radiation in High-Altitude Environments. Zhang Q, Gou W, Wang X, Zhang Y, Ma J, Zhang H, Zhang Y, Zhang H. Genome Biol Evol; 2016 Feb 23; 8(3):765-76. PubMed ID: 26907498 [Abstract] [Full Text] [Related]
8. Mitochondrial phylogeography of grassland caterpillars (Lepidoptera: Lymantriinae: Gynaephora) endemic to the Qinghai-Tibetan plateau. Yuan ML, Bao MH, Zhang QL, Guo ZL, Li M, Wang J. Ecol Evol; 2024 Sep 23; 14(9):e70270. PubMed ID: 39279803 [Abstract] [Full Text] [Related]
9. Genomic and functional evidence reveals convergent evolution in fishes on the Tibetan Plateau. Yang L, Wang Y, Sun N, Chen J, He S. Mol Ecol; 2021 Nov 23; 30(22):5752-5764. PubMed ID: 34516715 [Abstract] [Full Text] [Related]
10. Population Genomics Analysis Revealed Origin and High-altitude Adaptation of Tibetan Pigs. Ma YF, Han XM, Huang CP, Zhong L, Adeola AC, Irwin DM, Xie HB, Zhang YP. Sci Rep; 2019 Aug 07; 9(1):11463. PubMed ID: 31391504 [Abstract] [Full Text] [Related]
11. Study on Tibetan Chicken embryonic adaptability to chronic hypoxia by revealing differential gene expression in heart tissue. Li M, Zhao C. Sci China C Life Sci; 2009 Mar 07; 52(3):284-95. PubMed ID: 19294354 [Abstract] [Full Text] [Related]
12. Genetic variation in PTPN1 contributes to metabolic adaptation to high-altitude hypoxia in Tibetan migratory locusts. Ding D, Liu G, Hou L, Gui W, Chen B, Kang L. Nat Commun; 2018 Nov 26; 9(1):4991. PubMed ID: 30478313 [Abstract] [Full Text] [Related]
13. Differential gene expression patterns between the head and thorax of Gynaephora aureata are associated with high-altitude adaptation. Zhao JR, Hu SY, Zhang LJ, Zhang L, Yang XZ, Yuan ML. Front Genet; 2023 Nov 26; 14():1137618. PubMed ID: 37144120 [Abstract] [Full Text] [Related]
14. Genetic Adaptation of Schizothoracine Fish to the Phased Uplifting of the Qinghai-Tibetan Plateau. Zhang D, Yu M, Hu P, Peng S, Liu Y, Li W, Wang C, He S, Zhai W, Xu Q, Chen L. G3 (Bethesda); 2017 Apr 03; 7(4):1267-1276. PubMed ID: 28209761 [Abstract] [Full Text] [Related]
15. Divergent contributions of coding and noncoding sequences to initial high-altitude adaptation in passerine birds endemic to the Qinghai-Tibet Plateau. Hao Y, Song G, Zhang YE, Zhai W, Jia C, Ji Y, Tang S, Lv H, Qu Y, Lei F. Mol Ecol; 2023 Jul 03; 32(13):3524-3540. PubMed ID: 37000417 [Abstract] [Full Text] [Related]
16. Genomic Analyses Reveal Potential Independent Adaptation to High Altitude in Tibetan Chickens. Wang MS, Li Y, Peng MS, Zhong L, Wang ZJ, Li QY, Tu XL, Dong Y, Zhu CL, Wang L, Yang MM, Wu SF, Miao YW, Liu JP, Irwin DM, Wang W, Wu DD, Zhang YP. Mol Biol Evol; 2015 Jul 03; 32(7):1880-9. PubMed ID: 25788450 [Abstract] [Full Text] [Related]
17. Comprehensive transcriptomic analysis of Tibetan Schizothoracinae fish Gymnocypris przewalskii reveals how it adapts to a high altitude aquatic life. Tong C, Fei T, Zhang C, Zhao K. BMC Evol Biol; 2017 Mar 09; 17(1):74. PubMed ID: 28274203 [Abstract] [Full Text] [Related]
18. Population transcriptomics uncover the relative roles of positive selection and differential expression in Batrachium bungei adaptation to the Qinghai-Tibetan plateau. Yu X, Wei P, Zhao S, Chen Z, Li X, Zhang W, Liu C, Yang Y, Li X, Liu X. Plant Cell Rep; 2023 May 09; 42(5):879-893. PubMed ID: 36973418 [Abstract] [Full Text] [Related]
20. Hypoxia adaptations in the grey wolf (Canis lupus chanco) from Qinghai-Tibet Plateau. Zhang W, Fan Z, Han E, Hou R, Zhang L, Galaverni M, Huang J, Liu H, Silva P, Li P, Pollinger JP, Du L, Zhang X, Yue B, Wayne RK, Zhang Z. PLoS Genet; 2014 Jul 09; 10(7):e1004466. PubMed ID: 25078401 [Abstract] [Full Text] [Related] Page: [Next] [New Search]