These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Dynamic metabolic and transcriptional profiling of Rhodococcus sp. strain YYL during the degradation of tetrahydrofuran. He Z, Yao Y, Lu Z, Ye Y. Appl Environ Microbiol; 2014 May; 80(9):2656-64. PubMed ID: 24532074 [Abstract] [Full Text] [Related]
6. Trehalose promotes Rhodococcus sp. strain YYL colonization in activated sludge under tetrahydrofuran (THF) stress. He Z, Zhang K, Wang H, Lv Z. Front Microbiol; 2015 May; 6():438. PubMed ID: 26029182 [Abstract] [Full Text] [Related]
7. Enrichment and characterization of a highly efficient tetrahydrofuran-degrading bacterial culture. Huang H, Yu H, Qi M, Liu Z, Wang H, Lu Z. Biodegradation; 2019 Dec; 30(5-6):467-479. PubMed ID: 31463639 [Abstract] [Full Text] [Related]
12. Microbial Community Analysis Provides Insights into the Effects of Tetrahydrofuran on 1,4-Dioxane Biodegradation. Xiong Y, Mason OU, Lowe A, Zhou C, Chen G, Tang Y. Appl Environ Microbiol; 2019 Jun 01; 85(11):. PubMed ID: 30926731 [Abstract] [Full Text] [Related]
13. 1,4-Dioxane degradation potential of members of the genera Pseudonocardia and Rhodococcus. Inoue D, Tsunoda T, Sawada K, Yamamoto N, Saito Y, Sei K, Ike M. Biodegradation; 2016 Nov 01; 27(4-6):277-286. PubMed ID: 27623820 [Abstract] [Full Text] [Related]
14. Biodegradation of Tetrahydrofuran by the Newly Isolated Filamentous Fungus Pseudallescheria boydii ZM01. Ren H, Li H, Wang H, Huang H, Lu Z. Microorganisms; 2020 Aug 05; 8(8):. PubMed ID: 32764240 [Abstract] [Full Text] [Related]
15. Novel tetrahydrofuran (THF) degradation-associated genes and cooperation patterns of a THF-degrading microbial community as revealed by metagenomic. Qi M, Huang H, Zhang Y, Wang H, Li H, Lu Z. Chemosphere; 2019 Sep 05; 231():173-183. PubMed ID: 31129398 [Abstract] [Full Text] [Related]
16. [Characteristics of tetrahydrofuran degradation by Pseudomonas oleovorans DT4]. Zhou YY, Chen DZ, Jin XJ, Chen JM, He J. Huan Jing Ke Xue; 2011 Jan 05; 32(1):266-71. PubMed ID: 21404697 [Abstract] [Full Text] [Related]
17. Biodegradation of chlortetracycline by Bacillus cereus LZ01: Performance, degradative pathway and possible genes involved. Zhang S, Wang J. J Hazard Mater; 2022 Jul 15; 434():128941. PubMed ID: 35462123 [Abstract] [Full Text] [Related]
18. Carbon sources that enable enrichment of 1,4-dioxane-degrading bacteria in landfill leachate. Inoue D, Hisada K, Okumura T, Yabuki Y, Yoshida G, Kuroda M, Ike M. Biodegradation; 2020 Apr 15; 31(1-2):23-34. PubMed ID: 31520343 [Abstract] [Full Text] [Related]
19. Biodegradation pathway of di-(2-ethylhexyl) phthalate by a novel Rhodococcus pyridinivorans XB and its bioaugmentation for remediation of DEHP contaminated soil. Zhao HM, Hu RW, Chen XX, Chen XB, Lü H, Li YW, Li H, Mo CH, Cai QY, Wong MH. Sci Total Environ; 2018 Nov 01; 640-641():1121-1131. PubMed ID: 30021277 [Abstract] [Full Text] [Related]
20. Bioremediation of PCB-contaminated shallow river sediments: The efficacy of biodegradation using individual bacterial strains and their consortia. Horváthová H, Lászlová K, Dercová K. Chemosphere; 2018 Feb 01; 193():270-277. PubMed ID: 29141235 [Abstract] [Full Text] [Related] Page: [Next] [New Search]