These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
470 related items for PubMed ID: 29212470
1. Silencing of DND1 in potato and tomato impedes conidial germination, attachment and hyphal growth of Botrytis cinerea. Sun K, van Tuinen A, van Kan JAL, Wolters AA, Jacobsen E, Visser RGF, Bai Y. BMC Plant Biol; 2017 Dec 06; 17(1):235. PubMed ID: 29212470 [Abstract] [Full Text] [Related]
2. Down-regulation of Arabidopsis DND1 orthologs in potato and tomato leads to broad-spectrum resistance to late blight and powdery mildew. Sun K, Wolters AM, Loonen AE, Huibers RP, van der Vlugt R, Goverse A, Jacobsen E, Visser RG, Bai Y. Transgenic Res; 2016 Apr 06; 25(2):123-38. PubMed ID: 26577903 [Abstract] [Full Text] [Related]
3. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways. Zhang Y, Li D, Zhang H, Hong Y, Huang L, Liu S, Li X, Ouyang Z, Song F. BMC Plant Biol; 2015 Oct 21; 15():252. PubMed ID: 26490733 [Abstract] [Full Text] [Related]
4. Silencing of the tomato phosphatidylinositol-phospholipase C2 (SlPLC2) reduces plant susceptibility to Botrytis cinerea. Gonorazky G, Guzzo MC, Abd-El-Haliem AM, Joosten MH, Laxalt AM. Mol Plant Pathol; 2016 Dec 21; 17(9):1354-1363. PubMed ID: 26868615 [Abstract] [Full Text] [Related]
5. Tomato Sl3-MMP, a member of the Matrix metalloproteinase family, is required for disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. Li D, Zhang H, Song Q, Wang L, Liu S, Hong Y, Huang L, Song F. BMC Plant Biol; 2015 Jun 14; 15():143. PubMed ID: 26070456 [Abstract] [Full Text] [Related]
6. Tomato SlMKK2 and SlMKK4 contribute to disease resistance against Botrytis cinerea. Li X, Zhang Y, Huang L, Ouyang Z, Hong Y, Zhang H, Li D, Song F. BMC Plant Biol; 2014 Jun 15; 14():166. PubMed ID: 24930014 [Abstract] [Full Text] [Related]
7. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea. Angulo C, de la O Leyva M, Finiti I, López-Cruz J, Fernández-Crespo E, García-Agustín P, González-Bosch C. J Plant Physiol; 2015 Mar 01; 175():163-73. PubMed ID: 25543862 [Abstract] [Full Text] [Related]
8. Transcriptome, hormonal, and secondary metabolite changes in leaves of DEFENSE NO DEATH 1 (DND1) silenced potato plants. Bánfalvi Z, Kalapos B, Hamow KÁ, Jose J, Éva C, Odgerel K, Karsai-Rektenwald F, Villányi V, Sági L. Sci Rep; 2024 Sep 04; 14(1):20601. PubMed ID: 39232097 [Abstract] [Full Text] [Related]
9. Determination of histone epigenetic marks in Arabidopsis and tomato genes in the early response to Botrytis cinerea. Crespo-Salvador Ó, Escamilla-Aguilar M, López-Cruz J, López-Rodas G, González-Bosch C. Plant Cell Rep; 2018 Jan 04; 37(1):153-166. PubMed ID: 29119291 [Abstract] [Full Text] [Related]
13. Tomato Stress-Associated Protein 4 Contributes Positively to Immunity Against Necrotrophic Fungus Botrytis cinerea. Liu S, Yuan X, Wang Y, Wang H, Wang J, Shen Z, Gao Y, Cai J, Li D, Song F. Mol Plant Microbe Interact; 2019 May 04; 32(5):566-582. PubMed ID: 30589365 [Abstract] [Full Text] [Related]
16. Control efficiency and expressions of resistance genes in tomato plants treated with ε-poly-l-lysine against Botrytis cinerea. Sun G, Wang H, Shi B, Shangguan N, Wang Y, Ma Q. Pestic Biochem Physiol; 2017 Nov 04; 143():191-198. PubMed ID: 29183591 [Abstract] [Full Text] [Related]
17. The dual role of oxalic acid on the resistance of tomato against Botrytis cinerea. Sun G, Feng C, Zhang A, Zhang Y, Chang D, Wang Y, Ma Q. World J Microbiol Biotechnol; 2019 Feb 02; 35(2):36. PubMed ID: 30712096 [Abstract] [Full Text] [Related]
18. Absence of the endo-beta-1,4-glucanases Cel1 and Cel2 reduces susceptibility to Botrytis cinerea in tomato. Flors V, Leyva Mde L, Vicedo B, Finiti I, Real MD, García-Agustín P, Bennett AB, González-Bosch C. Plant J; 2007 Dec 02; 52(6):1027-40. PubMed ID: 17916112 [Abstract] [Full Text] [Related]
19. miR319c acts as a positive regulator of tomato against Botrytis cinerea infection by targeting TCP29. Wu F, Qi J, Meng X, Jin W. Plant Sci; 2020 Nov 02; 300():110610. PubMed ID: 33180702 [Abstract] [Full Text] [Related]
20. Mapping of loci from Solanum lycopersicoides conferring resistance or susceptibility to Botrytis cinerea in tomato. Davis J, Yu D, Evans W, Gokirmak T, Chetelat RT, Stotz HU. Theor Appl Genet; 2009 Jul 02; 119(2):305-14. PubMed ID: 19399472 [Abstract] [Full Text] [Related] Page: [Next] [New Search]