These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
417 related items for PubMed ID: 29214392
21. Short-interval cortical inhibition and corticomotor excitability with fatiguing hand exercise: a central adaptation to fatigue? Benwell NM, Sacco P, Hammond GR, Byrnes ML, Mastaglia FL, Thickbroom GW. Exp Brain Res; 2006 Apr; 170(2):191-8. PubMed ID: 16328285 [Abstract] [Full Text] [Related]
22. Central fatigue assessed by transcranial magnetic stimulation in ultratrail running. Temesi J, Rupp T, Martin V, Arnal PJ, Féasson L, Verges S, Millet GY. Med Sci Sports Exerc; 2014 Jun; 46(6):1166-75. PubMed ID: 24195865 [Abstract] [Full Text] [Related]
24. Short-interval cortical inhibition and intracortical facilitation during submaximal voluntary contractions changes with fatigue. Hunter SK, McNeil CJ, Butler JE, Gandevia SC, Taylor JL. Exp Brain Res; 2016 Sep; 234(9):2541-51. PubMed ID: 27165508 [Abstract] [Full Text] [Related]
25. Task failure during sustained low-intensity contraction is not associated with a critical amount of central fatigue. Souron R, Voirin AC, Kennouche D, Espeit L, Millet GY, Rupp T, Lapole T. Scand J Med Sci Sports; 2020 Dec; 30(12):2329-2341. PubMed ID: 32869360 [Abstract] [Full Text] [Related]
26. Effects of endurance cycling training on neuromuscular fatigue in healthy active men. Part II: Corticospinal excitability and voluntary activation. Aboodarda SJ, Mira J, Floreani M, Jaswal R, Moon SJ, Amery K, Rupp T, Millet GY. Eur J Appl Physiol; 2018 Nov; 118(11):2295-2305. PubMed ID: 30128852 [Abstract] [Full Text] [Related]
27. Effects of pre-induced fatigue vs. concurrent pain on exercise tolerance, neuromuscular performance and corticospinal responses of locomotor muscles. Aboodarda SJ, Iannetta D, Emami N, Varesco G, Murias JM, Millet GY. J Physiol; 2020 Jan; 598(2):285-302. PubMed ID: 31826296 [Abstract] [Full Text] [Related]
28. Cortical and spinal modulation of antagonist coactivation during a submaximal fatiguing contraction in humans. Lévénez M, Garland SJ, Klass M, Duchateau J. J Neurophysiol; 2008 Feb; 99(2):554-63. PubMed ID: 18046002 [Abstract] [Full Text] [Related]
29. Effect of fatigue-related group III/IV afferent firing on intracortical inhibition and facilitation in hand muscles. Latella C, van der Groen O, Ruas CV, Taylor JL. J Appl Physiol (1985); 2020 Jan 01; 128(1):149-158. PubMed ID: 31725359 [Abstract] [Full Text] [Related]
30. Changes in voluntary activation assessed by transcranial magnetic stimulation during prolonged cycling exercise. Jubeau M, Rupp T, Perrey S, Temesi J, Wuyam B, Levy P, Verges S, Millet GY. PLoS One; 2014 Jan 01; 9(2):e89157. PubMed ID: 24586559 [Abstract] [Full Text] [Related]
31. Corticospinal changes induced by fatiguing eccentric versus concentric exercise. Garnier YM, Paizis C, Lepers R. Eur J Sport Sci; 2019 Mar 01; 19(2):166-176. PubMed ID: 30016203 [Abstract] [Full Text] [Related]
32. Supraspinal fatigue does not explain the sex difference in muscle fatigue of maximal contractions. Hunter SK, Butler JE, Todd G, Gandevia SC, Taylor JL. J Appl Physiol (1985); 2006 Oct 01; 101(4):1036-44. PubMed ID: 16728525 [Abstract] [Full Text] [Related]
33. Effect of graded hypoxia on supraspinal contributions to fatigue with unilateral knee-extensor contractions. Goodall S, Ross EZ, Romer LM. J Appl Physiol (1985); 2010 Dec 01; 109(6):1842-51. PubMed ID: 20813979 [Abstract] [Full Text] [Related]
34. Intensity-dependent alterations in the excitability of cortical and spinal projections to the knee extensors during isometric and locomotor exercise. Weavil JC, Sidhu SK, Mangum TS, Richardson RS, Amann M. Am J Physiol Regul Integr Comp Physiol; 2015 Jun 15; 308(12):R998-1007. PubMed ID: 25876651 [Abstract] [Full Text] [Related]
35. Stimulation of the motor cortex and corticospinal tract to assess human muscle fatigue. Gruet M, Temesi J, Rupp T, Levy P, Millet GY, Verges S. Neuroscience; 2013 Feb 12; 231():384-99. PubMed ID: 23131709 [Abstract] [Full Text] [Related]
36. The effect of ischaemic preconditioning on central and peripheral fatiguing mechanisms in humans following sustained maximal isometric exercise. Halley SL, Marshall P, Siegler JC. Exp Physiol; 2018 Jul 12; 103(7):976-984. PubMed ID: 29704398 [Abstract] [Full Text] [Related]
37. Mechanisms of neuromuscular fatigue and recovery in unilateral versus bilateral maximal voluntary contractions. Koral J, Oranchuk DJ, Wrightson JG, Twomey R, Millet GY. J Appl Physiol (1985); 2020 Apr 01; 128(4):785-794. PubMed ID: 32163332 [Abstract] [Full Text] [Related]
38. Responses of human motoneurons to corticospinal stimulation during maximal voluntary contractions and ischemia. Butler JE, Taylor JL, Gandevia SC. J Neurosci; 2003 Nov 12; 23(32):10224-30. PubMed ID: 14614080 [Abstract] [Full Text] [Related]
39. Corticospinal output and loss of force during motor fatigue. Rösler KM, Scheidegger O, Magistris MR. Exp Brain Res; 2009 Aug 12; 197(2):111-23. PubMed ID: 19572125 [Abstract] [Full Text] [Related]
40. Neuromuscular Fatigue during Prolonged Exercise in Hypoxia. Jubeau M, Rupp T, Temesi J, Perrey S, Wuyam B, Millet GY, Verges S. Med Sci Sports Exerc; 2017 Mar 12; 49(3):430-439. PubMed ID: 27753741 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]