These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
680 related items for PubMed ID: 29214806
21. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces. Li G, Alhosani MH, Yuan S, Liu H, Ghaferi AA, Zhang T. Langmuir; 2014 Dec 09; 30(48):14498-511. PubMed ID: 25419845 [Abstract] [Full Text] [Related]
22. Biphilic Surfaces with Optimum Hydrophobic Islands on a Superhydrophobic Background for Dropwise Flow Condensation. Chehrghani MM, Abbasiasl T, Sadaghiani AK, Koşar A. Langmuir; 2021 Nov 23; 37(46):13567-13575. PubMed ID: 34751032 [Abstract] [Full Text] [Related]
23. How coalescing droplets jump. Enright R, Miljkovic N, Sprittles J, Nolan K, Mitchell R, Wang EN. ACS Nano; 2014 Oct 28; 8(10):10352-62. PubMed ID: 25171210 [Abstract] [Full Text] [Related]
24. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation. Mondal B, Mac Giolla Eain M, Xu Q, Egan VM, Punch J, Lyons AM. ACS Appl Mater Interfaces; 2015 Oct 28; 7(42):23575-88. PubMed ID: 26372672 [Abstract] [Full Text] [Related]
25. Self-Cleaning Porous Surfaces for Dry Condensation. Liu K, Huang Z, Hemmatifar A, Oyarzun DI, Zhou J, Santiago JG. ACS Appl Mater Interfaces; 2018 Aug 08; 10(31):26759-26764. PubMed ID: 30059209 [Abstract] [Full Text] [Related]
26. Atmosphere-Mediated Superhydrophobicity of Rationally Designed Micro/Nanostructured Surfaces. Yan X, Huang Z, Sett S, Oh J, Cha H, Li L, Feng L, Wu Y, Zhao C, Orejon D, Chen F, Miljkovic N. ACS Nano; 2019 Apr 23; 13(4):4160-4173. PubMed ID: 30933473 [Abstract] [Full Text] [Related]
28. Laplace Pressure Driven Single-Droplet Jumping on Structured Surfaces. Yan X, Qin Y, Chen F, Zhao G, Sett S, Hoque MJ, Rabbi KF, Zhang X, Wang Z, Li L, Chen F, Feng J, Miljkovic N. ACS Nano; 2020 Oct 27; 14(10):12796-12809. PubMed ID: 33052666 [Abstract] [Full Text] [Related]
29. Coalescence-Induced Jumping of Two Unequal-Sized Nanodroplets. Xie FF, Lu G, Wang XD, Wang BB. Langmuir; 2018 Feb 27; 34(8):2734-2740. PubMed ID: 29384379 [Abstract] [Full Text] [Related]
30. Focal Plane Shift Imaging for the Analysis of Dynamic Wetting Processes. Cha H, Chun JM, Sotelo J, Miljkovic N. ACS Nano; 2016 Sep 27; 10(9):8223-32. PubMed ID: 27447844 [Abstract] [Full Text] [Related]
37. Simple approach to superhydrophobic nanostructured Al for practical antifrosting application based on enhanced self-propelled jumping droplets. Kim A, Lee C, Kim H, Kim J. ACS Appl Mater Interfaces; 2015 Apr 08; 7(13):7206-13. PubMed ID: 25782028 [Abstract] [Full Text] [Related]
38. Coalescence-Induced Droplet Jumping on Honeycomb Bionic Superhydrophobic Surfaces. Gao Y, Ke Z, Yang W, Wang Z, Zhang Y, Wu W. Langmuir; 2022 Aug 16; 38(32):9981-9991. PubMed ID: 35917142 [Abstract] [Full Text] [Related]
39. Coalescence-Induced Droplet Jumping. Liu C, Zhao M, Zheng Y, Cheng L, Zhang J, Tee CATH. Langmuir; 2021 Jan 26; 37(3):983-1000. PubMed ID: 33443436 [Abstract] [Full Text] [Related]