These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


279 related items for PubMed ID: 29216494

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Engineering erucic acid biosynthesis in camelina (Camelina sativa) via FAE1 gene cloning and antisense technology.
    Bashiri H, Kahrizi D, Salmanian AH, Rahnama H, Azadi P.
    Cell Mol Biol (Noisy-le-grand); 2024 Jul 28; 70(7):243-251. PubMed ID: 39097867
    [Abstract] [Full Text] [Related]

  • 3. Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing.
    Jiang WZ, Henry IM, Lynagh PG, Comai L, Cahoon EB, Weeks DP.
    Plant Biotechnol J; 2017 May 28; 15(5):648-657. PubMed ID: 27862889
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. CRISPR/Cas9 editing of three CRUCIFERIN C homoeologues alters the seed protein profile in Camelina sativa.
    Lyzenga WJ, Harrington M, Bekkaoui D, Wigness M, Hegedus DD, Rozwadowski KL.
    BMC Plant Biol; 2019 Jul 04; 19(1):292. PubMed ID: 31272394
    [Abstract] [Full Text] [Related]

  • 6. Enhancing microRNA167A expression in seed decreases the α-linolenic acid content and increases seed size in Camelina sativa.
    Na G, Mu X, Grabowski P, Schmutz J, Lu C.
    Plant J; 2019 Apr 04; 98(2):346-358. PubMed ID: 30604453
    [Abstract] [Full Text] [Related]

  • 7. Camelina seed transcriptome: a tool for meal and oil improvement and translational research.
    Nguyen HT, Silva JE, Podicheti R, Macrander J, Yang W, Nazarenus TJ, Nam JW, Jaworski JG, Lu C, Scheffler BE, Mockaitis K, Cahoon EB.
    Plant Biotechnol J; 2013 Aug 04; 11(6):759-69. PubMed ID: 23551501
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Functional Characterization of the Effects of CsDGAT1 and CsDGAT2 on Fatty Acid Composition in Camelina sativa.
    Lee KR, Yeo Y, Lee J, Kim S, Im C, Kim I, Lee J, Lee SK, Suh MC, Kim HU.
    Int J Mol Sci; 2024 Jun 25; 25(13):. PubMed ID: 39000052
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Improved fatty acid profiles in seeds of Camelina sativa by artificial microRNA mediated FATB gene suppression.
    Ozseyhan ME, Li P, Na G, Li Z, Wang C, Lu C.
    Biochem Biophys Res Commun; 2018 Sep 05; 503(2):621-624. PubMed ID: 29906463
    [Abstract] [Full Text] [Related]

  • 13. Ectopic expression of cDNAs from larkspur (Consolida ajacis) for increased synthesis of gondoic acid (cis-11 eicosenoic acid) and its positional redistribution in seed triacylglycerol of Camelina sativa.
    Sarvas C, Puttick D, Forseille L, Cram D, Smith MA.
    Planta; 2021 Jul 21; 254(2):32. PubMed ID: 34287699
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Changes in fatty acid content and composition between wild type and CsHMA3 overexpressing Camelina sativa under heavy-metal stress.
    Park W, Feng Y, Kim H, Suh MC, Ahn SJ.
    Plant Cell Rep; 2015 Sep 21; 34(9):1489-98. PubMed ID: 25972262
    [Abstract] [Full Text] [Related]

  • 17. A fatty acid condensing enzyme from Physaria fendleri increases hydroxy fatty acid accumulation in transgenic oilseeds of Camelina sativa.
    Snapp AR, Kang J, Qi X, Lu C.
    Planta; 2014 Sep 21; 240(3):599-610. PubMed ID: 25023632
    [Abstract] [Full Text] [Related]

  • 18. Control of erucic acid biosynthesis in Camelina (Camelina sativa) by antisense technology.
    Bashiri H, Kahrizi D, Salmanian AH, Rahnama H, Azadi P.
    Cell Mol Biol (Noisy-le-grand); 2023 Jul 31; 69(7):212-217. PubMed ID: 37715377
    [Abstract] [Full Text] [Related]

  • 19. In Silico Analysis of Fatty Acid Desaturases Structures in Camelina sativa, and Functional Evaluation of Csafad7 and Csafad8 on Seed Oil Formation and Seed Morphology.
    Raboanatahiry N, Yin Y, Chen K, He J, Yu L, Li M.
    Int J Mol Sci; 2021 Oct 08; 22(19):. PubMed ID: 34639198
    [Abstract] [Full Text] [Related]

  • 20. A Specialized Diacylglycerol Acyltransferase Contributes to the Extreme Medium-Chain Fatty Acid Content of Cuphea Seed Oil.
    Iskandarov U, Silva JE, Kim HJ, Andersson M, Cahoon RE, Mockaitis K, Cahoon EB.
    Plant Physiol; 2017 May 08; 174(1):97-109. PubMed ID: 28325847
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.