These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
174 related items for PubMed ID: 29227022
21. StSTE12 is required for the pathogenicity of Setosphaeria turcica by regulating appressorium development and penetration. Gu SQ, Li P, Wu M, Hao ZM, Gong XD, Zhang XY, Tian L, Zhang P, Wang Y, Cao ZY, Fan YS, Han JM, Dong JG. Microbiol Res; 2014 Nov; 169(11):817-23. PubMed ID: 24813304 [Abstract] [Full Text] [Related]
22. Ss-Rhs1, a secretory Rhs repeat-containing protein, is required for the virulence of Sclerotinia sclerotiorum. Yu Y, Xiao J, Zhu W, Yang Y, Mei J, Bi C, Qian W, Qing L, Tan W. Mol Plant Pathol; 2017 Oct; 18(8):1052-1061. PubMed ID: 27392818 [Abstract] [Full Text] [Related]
23. Novel secretory protein Ss-Caf1 of the plant-pathogenic fungus Sclerotinia sclerotiorum is required for host penetration and normal sclerotial development. Xiao X, Xie J, Cheng J, Li G, Yi X, Jiang D, Fu Y. Mol Plant Microbe Interact; 2014 Jan; 27(1):40-55. PubMed ID: 24299212 [Abstract] [Full Text] [Related]
24. The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence. Rollins JA. Mol Plant Microbe Interact; 2003 Sep; 16(9):785-95. PubMed ID: 12971602 [Abstract] [Full Text] [Related]
25. Survival factor 1 contributes to the oxidative stress response and is required for full virulence of Sclerotinia sclerotiorum. Yu Y, Du J, Wang Y, Zhang M, Huang Z, Cai J, Fang A, Yang Y, Qing L, Bi C, Cheng J. Mol Plant Pathol; 2019 Jul; 20(7):895-906. PubMed ID: 31074170 [Abstract] [Full Text] [Related]
26. Transcription Factor SsSte12 Was Involved in Mycelium Growth and Development in Sclerotinia sclerotiorum. Xu T, Li J, Yu B, Liu L, Zhang X, Liu J, Pan H, Zhang Y. Front Microbiol; 2018 Jul; 9():2476. PubMed ID: 30386319 [Abstract] [Full Text] [Related]
27. Transcriptional Regulation by the Velvet Protein VE-1 during Asexual Development in the Fungus Neurospora crassa. Cea-Sánchez S, Corrochano-Luque M, Gutiérrez G, Glass NL, Cánovas D, Corrochano LM. mBio; 2022 Aug 30; 13(4):e0150522. PubMed ID: 35913159 [Abstract] [Full Text] [Related]
30. Effects of soil temperature, moisture, and burial depths on carpogenic germination of Sclerotinia sclerotiorum and S. minor. Wu BM, Subbarao KV. Phytopathology; 2008 Oct 30; 98(10):1144-52. PubMed ID: 18943461 [Abstract] [Full Text] [Related]
31. Early Secretory Pathway-Associated Proteins SsEmp24 and SsErv25 Are Involved in Morphogenesis and Pathogenicity in a Filamentous Phytopathogenic Fungus. Xie C, Shang Q, Mo C, Xiao Y, Wang G, Xie J, Jiang D, Xiao X. mBio; 2021 Dec 21; 12(6):e0317321. PubMed ID: 34933451 [Abstract] [Full Text] [Related]
32. Oxaloacetate acetylhydrolase gene mutants of Sclerotinia sclerotiorum do not accumulate oxalic acid, but do produce limited lesions on host plants. Liang X, Liberti D, Li M, Kim YT, Hutchens A, Wilson R, Rollins JA. Mol Plant Pathol; 2015 Aug 21; 16(6):559-71. PubMed ID: 25285668 [Abstract] [Full Text] [Related]
33. The Sclerotinia sclerotiorum Slt2 mitogen-activated protein kinase ortholog, SMK3, is required for infection initiation but not lesion expansion. Bashi ZD, Gyawali S, Bekkaoui D, Coutu C, Lee L, Poon J, Rimmer SR, Khachatourians GG, Hegedus DD. Can J Microbiol; 2016 Oct 21; 62(10):836-850. PubMed ID: 27503454 [Abstract] [Full Text] [Related]
34. Proteomic Analysis Reveals the Importance of Exudates on Sclerotial Development in Sclerotinia sclerotiorum. Tian J, Chen C, Sun H, Wang Z, Steinkellner S, Feng J, Liang Y. J Agric Food Chem; 2021 Feb 03; 69(4):1430-1440. PubMed ID: 33481591 [Abstract] [Full Text] [Related]
35. Beyond asexual development: modifications in the gene expression profile caused by the absence of the Aspergillus nidulans transcription factor FlbB. Oiartzabal-Arano E, Garzia A, Gorostidi A, Ugalde U, Espeso EA, Etxebeste O. Genetics; 2015 Apr 03; 199(4):1127-42. PubMed ID: 25701285 [Abstract] [Full Text] [Related]
36. Neurospora crassa developmental control mediated by the FLB-3 transcription factor. Boni AC, Ambrósio DL, Cupertino FB, Montenegro-Montero A, Virgilio S, Freitas FZ, Corrocher FA, Gonçalves RD, Yang A, Weirauch MT, Hughes TR, Larrondo LF, Bertolini MC. Fungal Biol; 2018 Jun 03; 122(6):570-582. PubMed ID: 29801802 [Abstract] [Full Text] [Related]
37. The putative Gγ subunit gene MGG1 is required for conidiation, appressorium formation, mating and pathogenicity in Magnaporthe oryzae. Li Y, Que Y, Liu Y, Yue X, Meng X, Zhang Z, Wang Z. Curr Genet; 2015 Nov 03; 61(4):641-51. PubMed ID: 25944571 [Abstract] [Full Text] [Related]
39. Aspergillus spp. eliminate Sclerotinia sclerotiorum by imbalancing the ambient oxalic acid concentration and parasitizing its sclerotia. Atallah O, Yassin S. Environ Microbiol; 2020 Dec 03; 22(12):5265-5279. PubMed ID: 32844537 [Abstract] [Full Text] [Related]
40. The bZIP-type transcription factor FlbB regulates distinct morphogenetic stages of colony formation in Aspergillus nidulans. Etxebeste O, Herrero-García E, Araújo-Bazán L, Rodríguez-Urra AB, Garzia A, Ugalde U, Espeso EA. Mol Microbiol; 2009 Sep 03; 73(5):775-89. PubMed ID: 19656299 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]