These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
730 related items for PubMed ID: 29235155
1. Effects of force fields on the conformational and dynamic properties of amyloid β(1-40) dimer explored by replica exchange molecular dynamics simulations. Watts CR, Gregory A, Frisbie C, Lovas S. Proteins; 2018 Mar; 86(3):279-300. PubMed ID: 29235155 [Abstract] [Full Text] [Related]
3. High-Resolution Structures of the Amyloid-β 1-42 Dimers from the Comparison of Four Atomistic Force Fields. Man VH, Nguyen PH, Derreumaux P. J Phys Chem B; 2017 Jun 22; 121(24):5977-5987. PubMed ID: 28538095 [Abstract] [Full Text] [Related]
4. Conformational Dynamics of Two Natively Unfolded Fragment Peptides: Comparison of the AMBER and CHARMM Force Fields. Chen W, Shi C, MacKerell AD, Shen J. J Phys Chem B; 2015 Jun 25; 119(25):7902-10. PubMed ID: 26020564 [Abstract] [Full Text] [Related]
5. Is the Conformational Ensemble of Alzheimer's Aβ10-40 Peptide Force Field Dependent? Siwy CM, Lockhart C, Klimov DK. PLoS Comput Biol; 2017 Jan 25; 13(1):e1005314. PubMed ID: 28085875 [Abstract] [Full Text] [Related]
6. Effects of all-atom force fields on amyloid oligomerization: replica exchange molecular dynamics simulations of the Aβ(16-22) dimer and trimer. Nguyen PH, Li MS, Derreumaux P. Phys Chem Chem Phys; 2011 May 28; 13(20):9778-88. PubMed ID: 21487594 [Abstract] [Full Text] [Related]
7. Dimerization Mechanism of Alzheimer Aβ40 Peptides: The High Content of Intrapeptide-Stabilized Conformations in A2V and A2T Heterozygous Dimers Retards Amyloid Fibril Formation. Nguyen PH, Sterpone F, Pouplana R, Derreumaux P, Campanera JM. J Phys Chem B; 2016 Dec 01; 120(47):12111-12126. PubMed ID: 27933940 [Abstract] [Full Text] [Related]
8. Atomic-level characterization of the ensemble of the Aβ(1-42) monomer in water using unbiased molecular dynamics simulations and spectral algorithms. Sgourakis NG, Merced-Serrano M, Boutsidis C, Drineas P, Du Z, Wang C, Garcia AE. J Mol Biol; 2011 Jan 14; 405(2):570-83. PubMed ID: 21056574 [Abstract] [Full Text] [Related]
9. Comparison of Secondary Structure Formation Using 10 Different Force Fields in Microsecond Molecular Dynamics Simulations. Cino EA, Choy WY, Karttunen M. J Chem Theory Comput; 2012 Aug 14; 8(8):2725-2740. PubMed ID: 22904695 [Abstract] [Full Text] [Related]
10. The inhibitory mechanism of a fullerene derivative against amyloid-β peptide aggregation: an atomistic simulation study. Sun Y, Qian Z, Wei G. Phys Chem Chem Phys; 2016 May 14; 18(18):12582-91. PubMed ID: 27091578 [Abstract] [Full Text] [Related]
12. Microsecond simulations of mdm2 and its complex with p53 yield insight into force field accuracy and conformational dynamics. Pantelopulos GA, Mukherjee S, Voelz VA. Proteins; 2015 Sep 14; 83(9):1665-76. PubMed ID: 26138282 [Abstract] [Full Text] [Related]
14. Conformational Preferences of an Intrinsically Disordered Protein Domain: A Case Study for Modern Force Fields. Gopal SM, Wingbermühle S, Schnatwinkel J, Juber S, Herrmann C, Schäfer LV. J Phys Chem B; 2021 Jan 14; 125(1):24-35. PubMed ID: 33382616 [Abstract] [Full Text] [Related]
15. Modeling structural interconversion in Alzheimers' amyloid beta peptide with classical and intrinsically disordered protein force fields. Wu KY, Doan D, Medrano M, Chang CA. J Biomol Struct Dyn; 2022 Jan 14; 40(20):10005-10022. PubMed ID: 34152264 [Abstract] [Full Text] [Related]
20. Structure and dynamics of the Abeta(21-30) peptide from the interplay of NMR experiments and molecular simulations. Fawzi NL, Phillips AH, Ruscio JZ, Doucleff M, Wemmer DE, Head-Gordon T. J Am Chem Soc; 2008 May 14; 130(19):6145-58. PubMed ID: 18412346 [Abstract] [Full Text] [Related] Page: [Next] [New Search]