These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


311 related items for PubMed ID: 29236500

  • 1. Structural Insights into the Thermophilic Adaption Mechanism of Endo-1,4-β-Xylanase from Caldicellulosiruptor owensensis.
    Liu X, Liu T, Zhang Y, Xin F, Mi S, Wen B, Gu T, Shi X, Wang F, Sun L.
    J Agric Food Chem; 2018 Jan 10; 66(1):187-193. PubMed ID: 29236500
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Biochemical characterization of two thermostable xylanolytic enzymes encoded by a gene cluster of Caldicellulosiruptor owensensis.
    Mi S, Jia X, Wang J, Qiao W, Peng X, Han Y.
    PLoS One; 2014 Jan 10; 9(8):e105264. PubMed ID: 25127169
    [Abstract] [Full Text] [Related]

  • 5. Characterization of a highly thermostable recombinant xylanase from Anoxybacillus ayderensis.
    Akpinar Z, Karaoglu H.
    Protein Expr Purif; 2024 Jul 10; 219():106478. PubMed ID: 38570105
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Delineating thermophilic xylanase from Bacillus licheniformis DM5 towards its potential application in xylooligosaccharides production.
    Ghosh A, Sutradhar S, Baishya D.
    World J Microbiol Biotechnol; 2019 Jan 31; 35(2):34. PubMed ID: 30706219
    [Abstract] [Full Text] [Related]

  • 8. Identification of a novel cellulose-binding domain within the endo-β-1,4-xylanase KRICT PX-3 from Paenibacillus terrae HPL-003.
    Kim DR, Lim HK, Lee KI, Hwang IT.
    Enzyme Microb Technol; 2016 Nov 31; 93-94():166-173. PubMed ID: 27702477
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Identification and Characterization of a Novel, Cold-Adapted d-Xylobiose- and d-Xylose-Releasing Endo-β-1,4-xylanase from an Antarctic Soil Bacterium, Duganella sp. PAMC 27433.
    Kim DY, Kim J, Lee YM, Lee JS, Shin DH, Ku BH, Son KH, Park HY.
    Biomolecules; 2021 Apr 30; 11(5):. PubMed ID: 33946575
    [Abstract] [Full Text] [Related]

  • 11. Heteroxylan hydrolysis by a recombinant cellulase-free GH10 xylanase from the alkaliphilic bacterium Halalkalibacterium halodurans C-125.
    Maati J, Prazeres DM, Grąz M, Wiater A, Jarosz-Wilkołazka A, Smaali I.
    Arch Microbiol; 2024 May 16; 206(6):261. PubMed ID: 38753095
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. An extremely thermophilic anaerobic bacterium Caldicellulosiruptor sp. F32 exhibits distinctive properties in growth and xylanases during xylan hydrolysis.
    Ying Y, Meng D, Chen X, Li F.
    Enzyme Microb Technol; 2013 Aug 15; 53(3):194-9. PubMed ID: 23830462
    [Abstract] [Full Text] [Related]

  • 14. Characterization of the Wild-Type and Truncated Forms of a Neutral GH10 Xylanase from Coprinus cinereus: Roles of C-Terminal Basic Amino Acid-Rich Extension in Its SDS Resistance, Thermostability, and Activity.
    Hu H, Chen K, Li L, Long L, Ding S.
    J Microbiol Biotechnol; 2017 Apr 28; 27(4):775-784. PubMed ID: 28173691
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Biochemical characterization of extra- and intracellular endoxylanse from thermophilic bacterium Caldicellulosiruptor kronotskyensis.
    Jia X, Qiao W, Tian W, Peng X, Mi S, Su H, Han Y.
    Sci Rep; 2016 Feb 22; 6():21672. PubMed ID: 26899227
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.