These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
462 related items for PubMed ID: 29237426
1. Long non-coding RNA MALAT1 protects preterm infants with bronchopulmonary dysplasia by inhibiting cell apoptosis. Cai C, Qiu J, Qiu G, Chen Y, Song Z, Li J, Gong X. BMC Pulm Med; 2017 Dec 13; 17(1):199. PubMed ID: 29237426 [Abstract] [Full Text] [Related]
2. Long non-coding RNA MALAT1 targeting STING transcription promotes bronchopulmonary dysplasia through regulation of CREB. Chen JH, Feng DD, Chen YF, Yang CX, Juan CX, Cao Q, Chen X, Liu S, Zhou GP. J Cell Mol Med; 2020 Sep 13; 24(18):10478-10492. PubMed ID: 32812343 [Abstract] [Full Text] [Related]
3. Differential expression of long non-coding RNAs in hyperoxia-induced bronchopulmonary dysplasia. Bao TP, Wu R, Cheng HP, Cui XW, Tian ZF. Cell Biochem Funct; 2016 Jul 13; 34(5):299-309. PubMed ID: 27137150 [Abstract] [Full Text] [Related]
4. MALAT1 binds to miR-188-3p to regulate ALOX5 activity in the lung inflammatory response of neonatal bronchopulmonary dysplasia. Feng DD, Chen JH, Chen YF, Cao Q, Li BJ, Chen XQ, Jin R, Zhou GP. Mol Immunol; 2023 Aug 13; 160():67-79. PubMed ID: 37385102 [Abstract] [Full Text] [Related]
5. A predictive model for preterm infants with bronchopulmonary dysplasia based on ferroptosis-related lncRNAs. Zhang Z, Chen K, Pan D, Liu T, Hang C, Ying Y, He J, Lv Y, Ma X, Chen Z, Liu L, Zhu J, Du L. BMC Pulm Med; 2023 Oct 02; 23(1):367. PubMed ID: 37784105 [Abstract] [Full Text] [Related]
7. Recruitment of PVT1 Enhances YTHDC1-Mediated m6A Modification of IL-33 in Hyperoxia-Induced Lung Injury During Bronchopulmonary Dysplasia. Bao T, Liu X, Hu J, Ma M, Li J, Cao L, Yu B, Cheng H, Zhao S, Tian Z. Inflammation; 2024 Apr 02; 47(2):469-482. PubMed ID: 37917328 [Abstract] [Full Text] [Related]
9. Cell Division Cycle 2 Protects Neonatal Rats Against Hyperoxia-Induced Bronchopulmonary Dysplasia. Li Z, Chen Y, Li W, Yan F. Yonsei Med J; 2020 Aug 02; 61(8):679-688. PubMed ID: 32734731 [Abstract] [Full Text] [Related]
10. Long non-coding RNA MALAT1 plays a protective role in bronchopulmonary dysplasia via the inhibition of apoptosis and interaction with the Keap1/Nrf2 signal pathway. Zhang M, Zhang X, Chu X, Cheng L, Cai C. Transl Pediatr; 2021 Feb 02; 10(2):265-275. PubMed ID: 33708512 [Abstract] [Full Text] [Related]
11. Changing expression profiles of mRNA, lncRNA, circRNA, and miRNA in lung tissue reveal the pathophysiological of bronchopulmonary dysplasia (BPD) in mouse model. Wang J, Yin J, Wang X, Liu H, Hu Y, Yan X, Zhuang B, Yu Z, Han S. J Cell Biochem; 2019 Jun 02; 120(6):9369-9380. PubMed ID: 30802330 [Abstract] [Full Text] [Related]
12. CD74, a novel predictor for bronchopulmonary dysplasia in preterm infants. Gao J, Wu M, Wang F, Jiang L, Tian R, Zhu X, He S. Medicine (Baltimore); 2020 Nov 25; 99(48):e23477. PubMed ID: 33235138 [Abstract] [Full Text] [Related]
13. Quercetin promotes the apoptosis of fibroblast-like synoviocytes in rheumatoid arthritis by upregulating lncRNA MALAT1. Pan F, Zhu L, Lv H, Pei C. Int J Mol Med; 2016 Nov 25; 38(5):1507-1514. PubMed ID: 28026003 [Abstract] [Full Text] [Related]
14. Inhibition of microRNA-29a alleviates hyperoxia-induced bronchopulmonary dysplasia in neonatal mice via upregulation of GAB1. Hu Y, Xie L, Yu J, Fu H, Zhou D, Liu H. Mol Med; 2019 Dec 31; 26(1):3. PubMed ID: 31892308 [Abstract] [Full Text] [Related]
15. The Role of LncRNA H19 in MAPK Signaling Pathway Implicated in the Progression of Bronchopulmonary Dysplasia. Mo W, Li Y, Chang W, Luo Y, Mai B, Zhou J. Cell Transplant; 2020 Dec 31; 29():963689720918294. PubMed ID: 32308025 [Abstract] [Full Text] [Related]
16. Silencing of Long Non-Coding RNA X Inactive Specific Transcript (Xist) Contributes to Suppression of Bronchopulmonary Dysplasia Induced by Hyperoxia in Newborn Mice via microRNA-101-3p and the transforming growth factor-beta 1 (TGF-β1)/Smad3 Axis. Yuan W, Liu X, Zeng L, Liu H, Cai B, Huang Y, Tao X, Mo L, Zhao L, Gao C. Med Sci Monit; 2020 Oct 18; 26():e922424. PubMed ID: 33070148 [Abstract] [Full Text] [Related]
17. MicroRNA expression profile in hyperoxia-exposed newborn mice during the development of bronchopulmonary dysplasia. Zhang X, Peng W, Zhang S, Wang C, He X, Zhang Z, Zhu L, Wang Y, Feng Z. Respir Care; 2011 Jul 18; 56(7):1009-15. PubMed ID: 21310116 [Abstract] [Full Text] [Related]
18. Inhibition of β-catenin signaling improves alveolarization and reduces pulmonary hypertension in experimental bronchopulmonary dysplasia. Alapati D, Rong M, Chen S, Hehre D, Hummler SC, Wu S. Am J Respir Cell Mol Biol; 2014 Jul 18; 51(1):104-13. PubMed ID: 24484510 [Abstract] [Full Text] [Related]
19. Gene expression profile in newborn rat lungs after two days of recovery of mechanical ventilation. Dénervaud V, Gremlich S, Trummer-Menzi E, Schittny JC, Roth-Kleiner M. Pediatr Res; 2015 Dec 18; 78(6):641-9. PubMed ID: 26353077 [Abstract] [Full Text] [Related]
20. Angiogenesis-related genes may be a more important factor than matrix metalloproteinases in bronchopulmonary dysplasia development. Yang M, Chen BL, Huang JB, Meng YN, Duan XJ, Chen L, Li LR, Chen YP. Oncotarget; 2017 Mar 21; 8(12):18670-18679. PubMed ID: 28103583 [Abstract] [Full Text] [Related] Page: [Next] [New Search]