These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
97 related items for PubMed ID: 2924167
1. A simple add-on algorithm to extend one-dimensional finite difference diffusion calculations to include charge coupling. Dibdin GH. Comput Appl Biosci; 1989 Feb; 5(1):19-26. PubMed ID: 2924167 [Abstract] [Full Text] [Related]
2. Precise charge-coupling calculations for finite difference diffusion problems using a modification of the add-on algorithm Q-COUPLE. Dibdin GH. Comput Appl Biosci; 1991 Apr; 7(2):261-3. PubMed ID: 2059853 [Abstract] [Full Text] [Related]
3. A finite-difference computer model of solute diffusion in bacterial films with simultaneous metabolism and chemical reaction. Dibdin GH. Comput Appl Biosci; 1992 Oct; 8(5):489-500. PubMed ID: 1422883 [Abstract] [Full Text] [Related]
4. Improved 3D continuum calculations of ion flux through membrane channels. Koumanov A, Zachariae U, Engelhardt H, Karshikoff A. Eur Biophys J; 2003 Dec; 32(8):689-702. PubMed ID: 12879311 [Abstract] [Full Text] [Related]
5. Plaque fluid and diffusion: study of the cariogenic challenge by computer modeling. Dibdin GH. J Dent Res; 1990 Jun; 69(6):1324-31. PubMed ID: 2355127 [Abstract] [Full Text] [Related]
6. Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes II: size effects on ionic distributions and diffusion-reaction rates. Lu B, Zhou YC. Biophys J; 2011 May 18; 100(10):2475-85. PubMed ID: 21575582 [Abstract] [Full Text] [Related]
7. Constructing irregular surfaces to enclose macromolecular complexes for mesoscale modeling using the discrete surface charge optimization (DISCO) algorithm. Zhang Q, Beard DA, Schlick T. J Comput Chem; 2003 Dec 18; 24(16):2063-74. PubMed ID: 14531059 [Abstract] [Full Text] [Related]
8. A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel. Kurnikova MG, Coalson RD, Graf P, Nitzan A. Biophys J; 1999 Feb 18; 76(2):642-56. PubMed ID: 9929470 [Abstract] [Full Text] [Related]
9. Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution. Lu B, Zhou YC, Huber GA, Bond SD, Holst MJ, McCammon JA. J Chem Phys; 2007 Oct 07; 127(13):135102. PubMed ID: 17919055 [Abstract] [Full Text] [Related]
10. Ionic ingress and charge-neutralization phenomena of conducting-polymer films. Majumdar S, Ray PS, Kargupta K, Ganguly S. Chemphyschem; 2010 Jan 18; 11(1):211-9. PubMed ID: 19937902 [Abstract] [Full Text] [Related]
11. A domain decomposition method for time fractional reaction-diffusion equation. Gong C, Bao W, Tang G, Jiang Y, Liu J. ScientificWorldJournal; 2014 Jan 18; 2014():681707. PubMed ID: 24778594 [Abstract] [Full Text] [Related]
12. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control. Brunton SL, Brunton BW, Proctor JL, Kutz JN. PLoS One; 2016 Jan 18; 11(2):e0150171. PubMed ID: 26919740 [Abstract] [Full Text] [Related]
13. An accelerated nonlocal Poisson-Boltzmann equation solver for electrostatics of biomolecule. Ying J, Xie D. Int J Numer Method Biomed Eng; 2018 Nov 18; 34(11):e3129. PubMed ID: 30021243 [Abstract] [Full Text] [Related]
14. An electrochemical model of the transport of charged molecules through the capillary glycocalyx. Stace TM, Damiano ER. Biophys J; 2001 Apr 18; 80(4):1670-90. PubMed ID: 11259282 [Abstract] [Full Text] [Related]
15. Modeling of electric-stimulus-responsive hydrogels immersed in different bathing solutions. Luo R, Li H, Birgersson E, Lam KY. J Biomed Mater Res A; 2008 Apr 18; 85(1):248-57. PubMed ID: 17688273 [Abstract] [Full Text] [Related]
16. Computational models in nano-bioelectronics: simulation of ionic transport in voltage operated channels. Longaretti M, Marino G, Chini B, Jerome JW, Sacco R. J Nanosci Nanotechnol; 2008 Jul 18; 8(7):3686-94. PubMed ID: 19051926 [Abstract] [Full Text] [Related]
17. A parallel algorithm for the two-dimensional time fractional diffusion equation with implicit difference method. Gong C, Bao W, Tang G, Jiang Y, Liu J. ScientificWorldJournal; 2014 Jul 18; 2014():219580. PubMed ID: 24744680 [Abstract] [Full Text] [Related]
18. Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. Schuss Z, Nadler B, Eisenberg RS. Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep 18; 64(3 Pt 2):036116. PubMed ID: 11580403 [Abstract] [Full Text] [Related]
19. Numerical Solution of the Extended Nernst-Planck Model. Samson E, Marchand J. J Colloid Interface Sci; 1999 Jul 01; 215(1):1-8. PubMed ID: 10362465 [Abstract] [Full Text] [Related]
20. Ion transport and selectivity in nanopores with spatially inhomogeneous fixed charge distributions. Ramírez P, Gómez V, Cervera J, Schiedt B, Mafé S. J Chem Phys; 2007 May 21; 126(19):194703. PubMed ID: 17523824 [Abstract] [Full Text] [Related] Page: [Next] [New Search]