These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
165 related items for PubMed ID: 29243870
1. Mechanistic Studies on NaHCO3 Hydrogenation and HCOOH Dehydrogenation Reactions Catalysed by a FeII Linear Tetraphosphine Complex. Marcos R, Bertini F, Rinkevicius Z, Peruzzini M, Gonsalvi L, Ahlquist MSG. Chemistry; 2018 Apr 06; 24(20):5366-5372. PubMed ID: 29243870 [Abstract] [Full Text] [Related]
3. trans-Fe(II)(H)2(diphosphine)(diamine) complexes as alternative catalysts for the asymmetric hydrogenation of ketones? A DFT study. Chen HY, Di Tommaso D, Hogarth G, Catlow CR. Dalton Trans; 2011 Jan 14; 40(2):402-12. PubMed ID: 21103602 [Abstract] [Full Text] [Related]
5. Mechanisms for dehydrogenation and hydrogenation of N-heterocycles using PNP-pincer-supported iron catalysts: a density functional study. Sawatlon B, Surawatanawong P. Dalton Trans; 2016 Oct 14; 45(38):14965-78. PubMed ID: 27550424 [Abstract] [Full Text] [Related]
6. Bio-mimetic self-assembled computationally designed catalysts of Mo and W for hydrogenation of CO2/dehydrogenation of HCOOH inspired by the active site of formate dehydrogenase. Shiekh BA, Kaur D, Kumar S. Phys Chem Chem Phys; 2019 Oct 02; 21(38):21370-21380. PubMed ID: 31531468 [Abstract] [Full Text] [Related]
8. Metal-Ligand Cooperation in Cp*Ir-Pyridylpyrrole Complexes: Rational Design and Catalytic Activity in Formic Acid Dehydrogenation and CO2 Hydrogenation under Ambient Conditions. Mo XF, Liu C, Chen ZW, Ma F, He P, Yi XY. Inorg Chem; 2021 Nov 01; 60(21):16584-16592. PubMed ID: 34637291 [Abstract] [Full Text] [Related]
10. Computational Design of Cobalt Catalysts for Hydrogenation of Carbon Dioxide and Dehydrogenation of Formic Acid. Ge H, Jing Y, Yang X. Inorg Chem; 2016 Dec 05; 55(23):12179-12184. PubMed ID: 27934414 [Abstract] [Full Text] [Related]
12. Versatile Rh- and Ir-Based Catalysts for CO2 Hydrogenation, Formic Acid Dehydrogenation, and Transfer Hydrogenation of Quinolines. Fidalgo J, Ruiz-Castañeda M, García-Herbosa G, Carbayo A, Jalón FA, Rodríguez AM, Manzano BR, Espino G. Inorg Chem; 2018 Nov 19; 57(22):14186-14198. PubMed ID: 30395446 [Abstract] [Full Text] [Related]
15. Design and Understanding of Adaptive Hydrogenation Catalysts Triggered by the H2/CO2-Formic Acid Equilibrium. Zhang Y, Levin N, Kang L, Müller F, Zobel M, DeBeer S, Leitner W, Bordet A. J Am Chem Soc; 2024 Nov 06; 146(44):30057-30067. PubMed ID: 39322628 [Abstract] [Full Text] [Related]
16. Pd2+ -Initiated Formic Acid Decomposition: Plausible Pathways for C-H Activation of Formate. Lee WJ, Hwang YJ, Kim J, Jeong H, Yoon CW. Chemphyschem; 2019 May 16; 20(10):1382-1391. PubMed ID: 30706621 [Abstract] [Full Text] [Related]
17. Synthesis of methanol from CO2 hydrogenation promoted by dissociative adsorption of hydrogen on a Ga3Ni5(221) surface. Tang Q, Shen Z, Huang L, He T, Adidharma H, Russell AG, Fan M. Phys Chem Chem Phys; 2017 Jul 19; 19(28):18539-18555. PubMed ID: 28685170 [Abstract] [Full Text] [Related]
18. Activation of H-H and H-O bonds at phosphorus with diiron complexes bearing pyramidal phosphinidene ligands. Alvarez MA, García ME, García-Vivó D, Ramos A, Ruiz MA. Inorg Chem; 2012 Mar 19; 51(6):3698-706. PubMed ID: 22380880 [Abstract] [Full Text] [Related]
19. A theoretical study on the hydrogenation of CO2 to methanol catalyzed by ruthenium pincer complexes. Zhou Y, Zhao Y, Shi X, Tang Y, Yang Z, Pu M, Lei M. Dalton Trans; 2022 Jul 05; 51(26):10020-10028. PubMed ID: 35703402 [Abstract] [Full Text] [Related]