These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


262 related items for PubMed ID: 29257112

  • 1. Comparative Analysis of Fruit Ripening-Related miRNAs and Their Targets in Blueberry Using Small RNA and Degradome Sequencing.
    Hou Y, Zhai L, Li X, Xue Y, Wang J, Yang P, Cao C, Li H, Cui Y, Bian S.
    Int J Mol Sci; 2017 Dec 19; 18(12):. PubMed ID: 29257112
    [Abstract] [Full Text] [Related]

  • 2. Identification of Blueberry miRNAs and Their Targets Based on High-Throughput Sequencing and Degradome Analyses.
    Li G, Wang Y, Lou X, Li H, Zhang C.
    Int J Mol Sci; 2018 Mar 26; 19(4):. PubMed ID: 29587414
    [Abstract] [Full Text] [Related]

  • 3. Identification of miRNAs involved in fruit ripening in Cavendish bananas by deep sequencing.
    Bi F, Meng X, Ma C, Yi G.
    BMC Genomics; 2015 Oct 13; 16():776. PubMed ID: 26462563
    [Abstract] [Full Text] [Related]

  • 4. MicroRNA profiling analysis of developing berries for 'Kyoho' and its early-ripening mutant during berry ripening.
    Guo DL, Li Q, Lv WQ, Zhang GH, Yu YH.
    BMC Plant Biol; 2018 Nov 16; 18(1):285. PubMed ID: 30445920
    [Abstract] [Full Text] [Related]

  • 5. Genome-wide comparison of microRNAs and their targeted transcripts among leaf, flower and fruit of sweet orange.
    Liu Y, Wang L, Chen D, Wu X, Huang D, Chen L, Li L, Deng X, Xu Q.
    BMC Genomics; 2014 Aug 20; 15(1):695. PubMed ID: 25142253
    [Abstract] [Full Text] [Related]

  • 6. Sweet cherry fruit miRNAs and effect of high CO2 on the profile associated with ripening.
    Wang Y, Li W, Chang H, Zhou J, Luo Y, Zhang K, Wang B.
    Planta; 2019 Jun 20; 249(6):1799-1810. PubMed ID: 30840178
    [Abstract] [Full Text] [Related]

  • 7. RNA-Seq analysis and annotation of a draft blueberry genome assembly identifies candidate genes involved in fruit ripening, biosynthesis of bioactive compounds, and stage-specific alternative splicing.
    Gupta V, Estrada AD, Blakley I, Reid R, Patel K, Meyer MD, Andersen SU, Brown AF, Lila MA, Loraine AE.
    Gigascience; 2015 Jun 20; 4():5. PubMed ID: 25830017
    [Abstract] [Full Text] [Related]

  • 8. Small RNA profiling and degradome analysis reveal regulation of microRNA in peanut embryogenesis and early pod development.
    Gao C, Wang P, Zhao S, Zhao C, Xia H, Hou L, Ju Z, Zhang Y, Li C, Wang X.
    BMC Genomics; 2017 Mar 02; 18(1):220. PubMed ID: 28253861
    [Abstract] [Full Text] [Related]

  • 9. Genome-wide identification of vegetative phase transition-associated microRNAs and target predictions using degradome sequencing in Malus hupehensis.
    Xing L, Zhang D, Li Y, Zhao C, Zhang S, Shen Y, An N, Han M.
    BMC Genomics; 2014 Dec 17; 15(1):1125. PubMed ID: 25515958
    [Abstract] [Full Text] [Related]

  • 10. Identification and characterization of novel microRNAs for fruit development and quality in hot pepper (Capsicum annuum L.).
    Liu Z, Zhang Y, Ou L, Kang L, Liu Y, Lv J, Wei G, Yang B, Yang S, Chen W, Dai X, Li X, Zhou S, Zhang Z, Ma Y, Zou X.
    Gene; 2017 Apr 15; 608():66-72. PubMed ID: 28122266
    [Abstract] [Full Text] [Related]

  • 11. Computational identification of conserved microRNAs and their targets from expression sequence tags of blueberry (Vaccinium corybosum).
    Li X, Hou Y, Zhang L, Zhang W, Quan C, Cui Y, Bian S.
    Plant Signal Behav; 2014 Apr 15; 9(9):e29462. PubMed ID: 25763692
    [Abstract] [Full Text] [Related]

  • 12. High-throughput sequencing and degradome analysis reveal neutral evolution of Cercis gigantea microRNAs and their targets.
    Guo W, Zhang Y, Wang Q, Zhan Y, Zhu G, Yu Q, Zhu L.
    Planta; 2016 Jan 15; 243(1):83-95. PubMed ID: 26342708
    [Abstract] [Full Text] [Related]

  • 13. Identification of miRNAs and Their Target Genes Involved in Cucumber Fruit Expansion Using Small RNA and Degradome Sequencing.
    Sun Y, Luo W, Chang H, Li Z, Zhou J, Li X, Zheng J, Hao M.
    Biomolecules; 2019 Sep 12; 9(9):. PubMed ID: 31547414
    [Abstract] [Full Text] [Related]

  • 14. Identification of miRNAs involved in fruit ripening by deep sequencing of Olea europaea L. transcriptome.
    Carbone F, Bruno L, Perrotta G, Bitonti MB, Muzzalupo I, Chiappetta A.
    PLoS One; 2019 Sep 12; 14(8):e0221460. PubMed ID: 31437230
    [Abstract] [Full Text] [Related]

  • 15. Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis.
    Yang X, Wang L, Yuan D, Lindsey K, Zhang X.
    J Exp Bot; 2013 Apr 12; 64(6):1521-36. PubMed ID: 23382553
    [Abstract] [Full Text] [Related]

  • 16. MicroRNAs and targets in senescent litchi fruit during ambient storage and post-cold storage shelf life.
    Yao F, Zhu H, Yi C, Qu H, Jiang Y.
    BMC Plant Biol; 2015 Jul 16; 15():181. PubMed ID: 26179282
    [Abstract] [Full Text] [Related]

  • 17. Identification of miRNAs and their targets through high-throughput sequencing and degradome analysis in male and female Asparagus officinalis.
    Chen J, Zheng Y, Qin L, Wang Y, Chen L, He Y, Fei Z, Lu G.
    BMC Plant Biol; 2016 Apr 12; 16():80. PubMed ID: 27068118
    [Abstract] [Full Text] [Related]

  • 18. Identification of Conserved and Novel MicroRNAs in Blueberry.
    Yue J, Lu X, Zhang H, Ge J, Gao X, Liu Y.
    Front Plant Sci; 2017 Apr 12; 8():1155. PubMed ID: 28713413
    [Abstract] [Full Text] [Related]

  • 19. Identification of Known and Novel microRNAs and Their Targets in Peach (Prunus persica) Fruit by High-Throughput Sequencing.
    Zhang C, Zhang B, Ma R, Yu M, Guo S, Guo L, Korir NK.
    PLoS One; 2016 Apr 12; 11(7):e0159253. PubMed ID: 27466805
    [Abstract] [Full Text] [Related]

  • 20. Dehydration-responsive miRNAs in foxtail millet: genome-wide identification, characterization and expression profiling.
    Yadav A, Khan Y, Prasad M.
    Planta; 2016 Mar 12; 243(3):749-66. PubMed ID: 26676987
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.