These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


158 related items for PubMed ID: 29272531

  • 21. Ectopic expression of OsWOX9A alters leaf anatomy and plant architecture in rice.
    Li D, Fan L, Shu Q, Guo F.
    Planta; 2024 Jun 16; 260(1):30. PubMed ID: 38879830
    [Abstract] [Full Text] [Related]

  • 22. The WUSCHEL-RELATED HOMEOBOX 3 gene PaWOX3 regulates lateral organ formation in Norway spruce.
    Alvarez JM, Sohlberg J, Engström P, Zhu T, Englund M, Moschou PN, von Arnold S.
    New Phytol; 2015 Dec 16; 208(4):1078-88. PubMed ID: 26115363
    [Abstract] [Full Text] [Related]

  • 23. Differential recruitment of WOX transcription factors for lateral development and organ fusion in Petunia and Arabidopsis.
    Vandenbussche M, Horstman A, Zethof J, Koes R, Rijpkema AS, Gerats T.
    Plant Cell; 2009 Aug 16; 21(8):2269-83. PubMed ID: 19717616
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. The three-domain model: a new model for the early development of leaves in Arabidopsis thaliana.
    Nakata M, Okada K.
    Plant Signal Behav; 2012 Nov 16; 7(11):1423-7. PubMed ID: 22951404
    [Abstract] [Full Text] [Related]

  • 26. Regulatory Networks Involving YABBY Genes in Rice Shoot Development.
    Dai M, Hu Y, Zhao Y, Zhou DX.
    Plant Signal Behav; 2007 Sep 16; 2(5):399-400. PubMed ID: 19704613
    [Abstract] [Full Text] [Related]

  • 27. Temporal and spatial regulation of DROOPING LEAF gene expression that promotes midrib formation in rice.
    Ohmori Y, Toriba T, Nakamura H, Ichikawa H, Hirano HY.
    Plant J; 2011 Jan 16; 65(1):77-86. PubMed ID: 21175891
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. A Wox3-patterning module organizes planar growth in grass leaves and ligules.
    Satterlee JW, Evans LJ, Conlon BR, Conklin P, Martinez-Gomez J, Yen JR, Wu H, Sylvester AW, Specht CD, Cheng J, Johnston R, Coen E, Scanlon MJ.
    Nat Plants; 2023 May 16; 9(5):720-732. PubMed ID: 37142751
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Genome-wide expression profiling and identification of genes under the control of the DROOPING LEAF gene during midrib development in rice.
    Abiko M, Ohmori Y, Hirano HY.
    Genes Genet Syst; 2008 Jun 16; 83(3):237-44. PubMed ID: 18670135
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Short and narrow flag leaf1, a GATA zinc finger domain-containing protein, regulates flag leaf size in rice (Oryza sativa).
    He P, Wang X, Zhang X, Jiang Y, Tian W, Zhang X, Li Y, Sun Y, Xie J, Ni J, He G, Sang X.
    BMC Plant Biol; 2018 Nov 09; 18(1):273. PubMed ID: 30413183
    [Abstract] [Full Text] [Related]

  • 38. Characterization of dwarf and narrow leaf (dnl-4) mutant in rice.
    Bae KD, Um TY, Yang WT, Park TH, Hong SY, Kim KM, Chung YS, Yun DJ, Kim DH.
    Plant Signal Behav; 2021 Feb 01; 16(2):1849490. PubMed ID: 33300429
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. The physiological mechanism of a drooping leaf2 mutation in rice.
    Huang J, Che S, Jin L, Qin F, Wang G, Ma N.
    Plant Sci; 2011 Jun 01; 180(6):757-65. PubMed ID: 21497711
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.