These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


201 related items for PubMed ID: 29276178

  • 1. The CDC50A extracellular domain is required for forming a functional complex with and chaperoning phospholipid flippases to the plasma membrane.
    Segawa K, Kurata S, Nagata S.
    J Biol Chem; 2018 Feb 09; 293(6):2172-2182. PubMed ID: 29276178
    [Abstract] [Full Text] [Related]

  • 2. Human Type IV P-type ATPases That Work as Plasma Membrane Phospholipid Flippases and Their Regulation by Caspase and Calcium.
    Segawa K, Kurata S, Nagata S.
    J Biol Chem; 2016 Jan 08; 291(2):762-72. PubMed ID: 26567335
    [Abstract] [Full Text] [Related]

  • 3. Identification and functional analyses of disease-associated P4-ATPase phospholipid flippase variants in red blood cells.
    Liou AY, Molday LL, Wang J, Andersen JP, Molday RS.
    J Biol Chem; 2019 Apr 26; 294(17):6809-6821. PubMed ID: 30850395
    [Abstract] [Full Text] [Related]

  • 4. Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure.
    Segawa K, Kurata S, Yanagihashi Y, Brummelkamp TR, Matsuda F, Nagata S.
    Science; 2014 Jun 06; 344(6188):1164-8. PubMed ID: 24904167
    [Abstract] [Full Text] [Related]

  • 5. ATP11C T418N, a gene mutation causing congenital hemolytic anemia, reduces flippase activity due to improper membrane trafficking.
    Arashiki N, Niitsuma K, Seki M, Takakuwa Y, Nakamura F.
    Biochem Biophys Res Commun; 2019 Aug 27; 516(3):705-712. PubMed ID: 31253392
    [Abstract] [Full Text] [Related]

  • 6. Two types of type IV P-type ATPases independently re-establish the asymmetrical distribution of phosphatidylserine in plasma membranes.
    Miyata Y, Yamada K, Nagata S, Segawa K.
    J Biol Chem; 2022 Nov 27; 298(11):102527. PubMed ID: 36162506
    [Abstract] [Full Text] [Related]

  • 7. Phospholipid flippase activities and substrate specificities of human type IV P-type ATPases localized to the plasma membrane.
    Takatsu H, Tanaka G, Segawa K, Suzuki J, Nagata S, Nakayama K, Shin HW.
    J Biol Chem; 2014 Nov 28; 289(48):33543-56. PubMed ID: 25315773
    [Abstract] [Full Text] [Related]

  • 8. Transport Cycle of Plasma Membrane Flippase ATP11C by Cryo-EM.
    Nakanishi H, Nishizawa T, Segawa K, Nureki O, Fujiyoshi Y, Nagata S, Abe K.
    Cell Rep; 2020 Sep 29; 32(13):108208. PubMed ID: 32997992
    [Abstract] [Full Text] [Related]

  • 9. Cryo-EM of the ATP11C flippase reconstituted in Nanodiscs shows a distended phospholipid bilayer inner membrane around transmembrane helix 2.
    Nakanishi H, Hayashida K, Nishizawa T, Oshima A, Abe K.
    J Biol Chem; 2022 Jan 29; 298(1):101498. PubMed ID: 34922944
    [Abstract] [Full Text] [Related]

  • 10. Role for phospholipid flippase complex of ATP8A1 and CDC50A proteins in cell migration.
    Kato U, Inadome H, Yamamoto M, Emoto K, Kobayashi T, Umeda M.
    J Biol Chem; 2013 Feb 15; 288(7):4922-34. PubMed ID: 23269685
    [Abstract] [Full Text] [Related]

  • 11. Phospholipid Flippase ATP10A Translocates Phosphatidylcholine and Is Involved in Plasma Membrane Dynamics.
    Naito T, Takatsu H, Miyano R, Takada N, Nakayama K, Shin HW.
    J Biol Chem; 2015 Jun 12; 290(24):15004-17. PubMed ID: 25947375
    [Abstract] [Full Text] [Related]

  • 12. Crystal structure of a human plasma membrane phospholipid flippase.
    Nakanishi H, Irie K, Segawa K, Hasegawa K, Fujiyoshi Y, Nagata S, Abe K.
    J Biol Chem; 2020 Jul 24; 295(30):10180-10194. PubMed ID: 32493773
    [Abstract] [Full Text] [Related]

  • 13. De Novo Missense Variations of ATP8B2 Impair Its Phosphatidylcholine Flippase Activity.
    Takatsu H, Nishimura N, Kosugi Y, Ogawa H, Nakayama K, Colin E, Platzer K, Abou Jamra R, Redler S, Prouteau C, Ziegler A, Shin HW.
    Mol Cell Biol; 2024 Sep 02; ():1-16. PubMed ID: 39219493
    [Abstract] [Full Text] [Related]

  • 14. Phospholipid flippase ATP11C is endocytosed and downregulated following Ca2+-mediated protein kinase C activation.
    Takatsu H, Takayama M, Naito T, Takada N, Tsumagari K, Ishihama Y, Nakayama K, Shin HW.
    Nat Commun; 2017 Nov 10; 8(1):1423. PubMed ID: 29123098
    [Abstract] [Full Text] [Related]

  • 15. Phospholipid flippases enable precursor B cells to flee engulfment by macrophages.
    Segawa K, Yanagihashi Y, Yamada K, Suzuki C, Uchiyama Y, Nagata S.
    Proc Natl Acad Sci U S A; 2018 Nov 27; 115(48):12212-12217. PubMed ID: 30355768
    [Abstract] [Full Text] [Related]

  • 16. ATP11C mutation is responsible for the defect in phosphatidylserine uptake in UPS-1 cells.
    Takada N, Takatsu H, Miyano R, Nakayama K, Shin HW.
    J Lipid Res; 2015 Nov 27; 56(11):2151-7. PubMed ID: 26420878
    [Abstract] [Full Text] [Related]

  • 17. Characterization of P4 ATPase Phospholipid Translocases (Flippases) in Human and Rat Pancreatic Beta Cells: THEIR GENE SILENCING INHIBITS INSULIN SECRETION.
    Ansari IU, Longacre MJ, Paulusma CC, Stoker SW, Kendrick MA, MacDonald MJ.
    J Biol Chem; 2015 Sep 18; 290(38):23110-23. PubMed ID: 26240149
    [Abstract] [Full Text] [Related]

  • 18. Conserved mechanism of phospholipid substrate recognition by the P4-ATPase Neo1 from Saccharomyces cerevisiae.
    Huang Y, Takar M, Best JT, Graham TR.
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Feb 18; 1865(2):158581. PubMed ID: 31786280
    [Abstract] [Full Text] [Related]

  • 19. Substrates of P4-ATPases: beyond aminophospholipids (phosphatidylserine and phosphatidylethanolamine).
    Shin HW, Takatsu H.
    FASEB J; 2019 Mar 18; 33(3):3087-3096. PubMed ID: 30509129
    [Abstract] [Full Text] [Related]

  • 20. Expression of three P4-phospholipid flippases-atp11a, atp11b, and atp11c in zebrafish (Danio rerio).
    Hawkey-Noble A, Umali J, Fowler G, French CR.
    Gene Expr Patterns; 2020 Jun 18; 36():119115. PubMed ID: 32344036
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.