These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


817 related items for PubMed ID: 29283342

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.
    Amador C, Urban MW, Chen S, Greenleaf JF.
    Phys Med Biol; 2012 Mar 07; 57(5):1263-82. PubMed ID: 22345425
    [Abstract] [Full Text] [Related]

  • 4. Two-Point Frequency Shift Method for Shear Wave Attenuation Measurement.
    Kijanka P, Urban MW.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Mar 07; 67(3):483-496. PubMed ID: 31603777
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Two Point Method For Robust Shear Wave Phase Velocity Dispersion Estimation of Viscoelastic Materials.
    Kijanka P, Ambrozinski L, Urban MW.
    Ultrasound Med Biol; 2019 Sep 07; 45(9):2540-2553. PubMed ID: 31230912
    [Abstract] [Full Text] [Related]

  • 7. Improved two-point frequency shift power method for measurement of shear wave attenuation.
    Kijanka P, Urban MW.
    Ultrasonics; 2022 Aug 07; 124():106735. PubMed ID: 35390627
    [Abstract] [Full Text] [Related]

  • 8. A Frequency-Shift Method to Measure Shear-Wave Attenuation in Soft Tissues.
    Bernard S, Kazemirad S, Cloutier G.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Mar 07; 64(3):514-524. PubMed ID: 27913343
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Viscoelasticity Mapping by Identification of Local Shear Wave Dynamics.
    van Sloun RJG, Wildeboer RR, Wijkstra H, Mischi M.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov 07; 64(11):1666-1673. PubMed ID: 28841556
    [Abstract] [Full Text] [Related]

  • 11. Acoustic radiation force-induced longitudinal shear wave for ultrasound-based viscoelastic evaluation.
    Liu HC, Lee HK, Urban MW, Zhou Q, Kijanka P.
    Ultrasonics; 2024 Aug 07; 142():107389. PubMed ID: 38924960
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Assessment of liver viscoelasticity by using shear waves induced by ultrasound radiation force.
    Chen S, Sanchez W, Callstrom MR, Gorman B, Lewis JT, Sanderson SO, Greenleaf JF, Xie H, Shi Y, Pashley M, Shamdasani V, Lachman M, Metz S.
    Radiology; 2013 Mar 07; 266(3):964-70. PubMed ID: 23220900
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Modeling shear waves through a viscoelastic medium induced by acoustic radiation force.
    Lee KH, Szajewski BA, Hah Z, Parker KJ, Maniatty AM.
    Int J Numer Method Biomed Eng; 2012 Mar 07; 28(6-7):678-96. PubMed ID: 25364845
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 41.