These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


160 related items for PubMed ID: 29283433

  • 1. ConGEMs: Condensed Gene Co-Expression Module Discovery Through Rule-Based Clustering and Its Application to Carcinogenesis.
    Mallik S, Zhao Z.
    Genes (Basel); 2017 Dec 28; 9(1):. PubMed ID: 29283433
    [Abstract] [Full Text] [Related]

  • 2. RANWAR: rank-based weighted association rule mining from gene expression and methylation data.
    Mallik S, Mukhopadhyay A, Maulik U.
    IEEE Trans Nanobioscience; 2015 Jan 28; 14(1):59-66. PubMed ID: 25265613
    [Abstract] [Full Text] [Related]

  • 3. DTFP-Growth: Dynamic Threshold-Based FP-Growth Rule Mining Algorithm Through Integrating Gene Expression, Methylation, and Protein-Protein Interaction Profiles.
    Mallik S, Bhadra T, Mukherji A, Mallik S, Bhadra T, Mukherji A, Mallik S, Bhadra T, Mukherji A.
    IEEE Trans Nanobioscience; 2018 Apr 28; 17(2):117-125. PubMed ID: 29870335
    [Abstract] [Full Text] [Related]

  • 4. Towards integrated oncogenic marker recognition through mutual information-based statistically significant feature extraction: an association rule mining based study on cancer expression and methylation profiles.
    Mallik S, Zhao Z.
    Quant Biol; 2017 Dec 28; 5(4):302-327. PubMed ID: 30221015
    [Abstract] [Full Text] [Related]

  • 5. Analyzing large gene expression and methylation data profiles using StatBicRM: statistical biclustering-based rule mining.
    Maulik U, Mallik S, Mukhopadhyay A, Bandyopadhyay S.
    PLoS One; 2015 Dec 28; 10(4):e0119448. PubMed ID: 25830807
    [Abstract] [Full Text] [Related]

  • 6. Association rule based similarity measures for the clustering of gene expression data.
    Sethi P, Alagiriswamy S.
    Open Med Inform J; 2010 Dec 28; 4():63-73. PubMed ID: 21603179
    [Abstract] [Full Text] [Related]

  • 7. TPSC: a module detection method based on topology potential and spectral clustering in weighted networks and its application in gene co-expression module discovery.
    Liu Y, Ye X, Yu CY, Shao W, Hou J, Feng W, Zhang J, Huang K.
    BMC Bioinformatics; 2021 Oct 25; 22(Suppl 4):111. PubMed ID: 34689740
    [Abstract] [Full Text] [Related]

  • 8. A functional gene module identification algorithm in gene expression data based on genetic algorithm and gene ontology.
    Zhang Y, Shi W, Sun Y.
    BMC Genomics; 2023 Feb 17; 24(1):76. PubMed ID: 36797662
    [Abstract] [Full Text] [Related]

  • 9. Analysis of the autophagy gene expression profile of pancreatic cancer based on autophagy-related protein microtubule-associated protein 1A/1B-light chain 3.
    Yang YH, Zhang YX, Gui Y, Liu JB, Sun JJ, Fan H.
    World J Gastroenterol; 2019 May 07; 25(17):2086-2098. PubMed ID: 31114135
    [Abstract] [Full Text] [Related]

  • 10. Dynamic association rules for gene expression data analysis.
    Chen SC, Tsai TH, Chung CH, Li WH.
    BMC Genomics; 2015 Oct 14; 16():786. PubMed ID: 26467206
    [Abstract] [Full Text] [Related]

  • 11. A Linear Regression and Deep Learning Approach for Detecting Reliable Genetic Alterations in Cancer Using DNA Methylation and Gene Expression Data.
    Mallik S, Seth S, Bhadra T, Zhao Z.
    Genes (Basel); 2020 Aug 12; 11(8):. PubMed ID: 32806782
    [Abstract] [Full Text] [Related]

  • 12. K-Module Algorithm: An Additional Step to Improve the Clustering Results of WGCNA Co-Expression Networks.
    Hou J, Ye X, Li C, Wang Y.
    Genes (Basel); 2021 Jan 12; 12(1):. PubMed ID: 33445666
    [Abstract] [Full Text] [Related]

  • 13. Identification of temporal association rules from time-series microarray data sets.
    Nam H, Lee K, Lee D.
    BMC Bioinformatics; 2009 Mar 19; 10 Suppl 3(Suppl 3):S6. PubMed ID: 19344482
    [Abstract] [Full Text] [Related]

  • 14. SNMRS: An advanced measure for Co-expression network analysis.
    Patowary P, Bhattacharyya DK, Barah P.
    Comput Biol Med; 2022 Apr 19; 143():105222. PubMed ID: 35121360
    [Abstract] [Full Text] [Related]

  • 15. Identifying RBM47, HCK, CD53, TYROBP, and HAVCR2 as Hub Genes in Advanced Atherosclerotic Plaques by Network-Based Analysis and Validation.
    Liu C, Zhang H, Chen Y, Wang S, Chen Z, Liu Z, Wang J.
    Front Genet; 2020 Apr 19; 11():602908. PubMed ID: 33519905
    [Abstract] [Full Text] [Related]

  • 16. Optimal ranking and directional signature classification using the integral strategy of multi-objective optimization-based association rule mining of multi-omics data.
    Mallik S, Seth S, Si A, Bhadra T, Zhao Z.
    Front Bioinform; 2023 Apr 19; 3():1182176. PubMed ID: 37576714
    [Abstract] [Full Text] [Related]

  • 17. Immune infiltration landscape and immune-marker molecular typing of pulmonary fibrosis with pulmonary hypertension.
    Cai H, Liu H.
    BMC Pulm Med; 2021 Nov 25; 21(1):383. PubMed ID: 34823498
    [Abstract] [Full Text] [Related]

  • 18. Identification of potential transcriptomic markers in developing pediatric sepsis: a weighted gene co-expression network analysis and a case-control validation study.
    Li Y, Li Y, Bai Z, Pan J, Wang J, Fang F.
    J Transl Med; 2017 Dec 13; 15(1):254. PubMed ID: 29237456
    [Abstract] [Full Text] [Related]

  • 19. 3PNMF-MKL: A non-negative matrix factorization-based multiple kernel learning method for multi-modal data integration and its application to gene signature detection.
    Mallik S, Sarkar A, Nath S, Maulik U, Das S, Pati SK, Ghosh S, Zhao Z.
    Front Genet; 2023 Dec 13; 14():1095330. PubMed ID: 36865387
    [Abstract] [Full Text] [Related]

  • 20. A network-based variable selection approach for identification of modules and biomarker genes associated with end-stage kidney disease.
    Zeng X, Li C, Li Y, Yu H, Fu P, Hong HG, Zhang W.
    Nephrology (Carlton); 2020 Oct 13; 25(10):775-784. PubMed ID: 31464346
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.