These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


603 related items for PubMed ID: 29288302

  • 1. Predicting Cu and Zn sorption capacity of biochar from feedstock C/N ratio and pyrolysis temperature.
    Rodríguez-Vila A, Selwyn-Smith H, Enunwa L, Smail I, Covelo EF, Sizmur T.
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7730-7739. PubMed ID: 29288302
    [Abstract] [Full Text] [Related]

  • 2. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar.
    Xu X, Cao X, Zhao L, Wang H, Yu H, Gao B.
    Environ Sci Pollut Res Int; 2013 Jan; 20(1):358-68. PubMed ID: 22477163
    [Abstract] [Full Text] [Related]

  • 3. Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality.
    Jassal RS, Johnson MS, Molodovskaya M, Black TA, Jollymore A, Sveinson K.
    J Environ Manage; 2015 Apr 01; 152():140-4. PubMed ID: 25621388
    [Abstract] [Full Text] [Related]

  • 4. Mechanisms for the removal of Cd(II) and Cu(II) from aqueous solution and mine water by biochars derived from agricultural wastes.
    Bandara T, Xu J, Potter ID, Franks A, Chathurika JBAJ, Tang C.
    Chemosphere; 2020 Sep 01; 254():126745. PubMed ID: 32315813
    [Abstract] [Full Text] [Related]

  • 5. Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions.
    Jiang S, Huang L, Nguyen TA, Ok YS, Rudolph V, Yang H, Zhang D.
    Chemosphere; 2016 Jan 01; 142():64-71. PubMed ID: 26206747
    [Abstract] [Full Text] [Related]

  • 6. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications.
    Li H, Dong X, da Silva EB, de Oliveira LM, Chen Y, Ma LQ.
    Chemosphere; 2017 Jul 01; 178():466-478. PubMed ID: 28342995
    [Abstract] [Full Text] [Related]

  • 7. Biochar as low-cost sorbent of volatile fuel organic compounds: potential application to water remediation.
    Saiz-Rubio R, Balseiro-Romero M, Antelo J, Díez E, Fiol S, Macías F.
    Environ Sci Pollut Res Int; 2019 Apr 01; 26(12):11605-11617. PubMed ID: 30484048
    [Abstract] [Full Text] [Related]

  • 8. Application of laboratory prepared and commercially available biochars to adsorption of cadmium, copper and zinc ions from water.
    Bogusz A, Oleszczuk P, Dobrowolski R.
    Bioresour Technol; 2015 Nov 01; 196():540-9. PubMed ID: 26295440
    [Abstract] [Full Text] [Related]

  • 9. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution.
    Chen X, Chen G, Chen L, Chen Y, Lehmann J, McBride MB, Hay AG.
    Bioresour Technol; 2011 Oct 01; 102(19):8877-84. PubMed ID: 21764299
    [Abstract] [Full Text] [Related]

  • 10. Utilization of biochar sorbents for Cd²⁺, Zn²⁺, and Cu²⁺ ions separation from aqueous solutions: comparative study.
    Frišták V, Pipíška M, Lesný J, Soja G, Friesl-Hanl W, Packová A.
    Environ Monit Assess; 2015 Jan 01; 187(1):4093. PubMed ID: 25407990
    [Abstract] [Full Text] [Related]

  • 11. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate.
    Gai X, Wang H, Liu J, Zhai L, Liu S, Ren T, Liu H.
    PLoS One; 2014 Jan 01; 9(12):e113888. PubMed ID: 25469875
    [Abstract] [Full Text] [Related]

  • 12. Assessing the effect of pyrolysis temperature on the molecular properties and copper sorption capacity of a halophyte biochar.
    Wei J, Tu C, Yuan G, Liu Y, Bi D, Xiao L, Lu J, Theng BKG, Wang H, Zhang L, Zhang X.
    Environ Pollut; 2019 Aug 01; 251():56-65. PubMed ID: 31071633
    [Abstract] [Full Text] [Related]

  • 13. Removal of Cd, Cu, Pb, and Zn from aqueous solutions by biochars.
    Doumer ME, Rigol A, Vidal M, Mangrich AS.
    Environ Sci Pollut Res Int; 2016 Feb 01; 23(3):2684-92. PubMed ID: 26438367
    [Abstract] [Full Text] [Related]

  • 14. Contrasting effects of composting and pyrolysis on bioavailability and speciation of Cu and Zn in pig manure.
    Meng J, Wang L, Zhong L, Liu X, Brookes PC, Xu J, Chen H.
    Chemosphere; 2017 Aug 01; 180():93-99. PubMed ID: 28391157
    [Abstract] [Full Text] [Related]

  • 15. Characterisation of agricultural waste-derived biochars and their sorption potential for sulfamethoxazole in pasture soil: a spectroscopic investigation.
    Srinivasan P, Sarmah AK.
    Sci Total Environ; 2015 Jan 01; 502():471-80. PubMed ID: 25290589
    [Abstract] [Full Text] [Related]

  • 16. Feedstock nitrogen content mediates maximum possible Pb sorption capacity of biochars.
    Ogbuagu C, Robinson S, Sizmur T.
    Environ Sci Process Impacts; 2023 Dec 13; 25(12):2102-2109. PubMed ID: 37909880
    [Abstract] [Full Text] [Related]

  • 17. Kinetic and isothermal adsorption-desorption of PAEs on biochars: effect of biomass feedstock, pyrolysis temperature, and mechanism implication of desorption hysteresis.
    Jing F, Pan M, Chen J.
    Environ Sci Pollut Res Int; 2018 Apr 13; 25(12):11493-11504. PubMed ID: 29427270
    [Abstract] [Full Text] [Related]

  • 18. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure.
    Meng J, Tao M, Wang L, Liu X, Xu J.
    Sci Total Environ; 2018 Aug 15; 633():300-307. PubMed ID: 29574374
    [Abstract] [Full Text] [Related]

  • 19. Initial biochar properties related to the removal of As, Se, Pb, Cd, Cu, Ni, and Zn from an acidic suspension.
    Clemente JS, Beauchemin S, MacKinnon T, Martin J, Johnston CT, Joern B.
    Chemosphere; 2017 Mar 15; 170():216-224. PubMed ID: 28006756
    [Abstract] [Full Text] [Related]

  • 20. Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars.
    Ding W, Dong X, Ime IM, Gao B, Ma LQ.
    Chemosphere; 2014 Jun 15; 105():68-74. PubMed ID: 24393563
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 31.