These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


213 related items for PubMed ID: 29291433

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Direct electron transfer type disposable sensor strip for glucose sensing employing an engineered FAD glucose dehydrogenase.
    Yamashita Y, Ferri S, Huynh ML, Shimizu H, Yamaoka H, Sode K.
    Enzyme Microb Technol; 2013 Feb 05; 52(2):123-8. PubMed ID: 23273282
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. FAD dependent glucose dehydrogenases - Discovery and engineering of representative glucose sensing enzymes.
    Okuda-Shimazaki J, Yoshida H, Sode K.
    Bioelectrochemistry; 2020 Apr 05; 132():107414. PubMed ID: 31838457
    [Abstract] [Full Text] [Related]

  • 6. Designer fungus FAD glucose dehydrogenase capable of direct electron transfer.
    Ito K, Okuda-Shimazaki J, Mori K, Kojima K, Tsugawa W, Ikebukuro K, Lin CE, La Belle J, Yoshida H, Sode K.
    Biosens Bioelectron; 2019 Jan 01; 123():114-123. PubMed ID: 30057265
    [Abstract] [Full Text] [Related]

  • 7. Comparison of Direct and Mediated Electron Transfer in Electrodes with Novel Fungal Flavin Adenine Dinucleotide Glucose Dehydrogenase.
    Ishida K, Orihara K, Muguruma H, Iwasa H, Hiratsuka A, Tsuji K, Kishimoto T.
    Anal Sci; 2018 Jan 01; 34(7):783-787. PubMed ID: 29998959
    [Abstract] [Full Text] [Related]

  • 8. Third generation impedimetric sensor employing direct electron transfer type glucose dehydrogenase.
    Ito Y, Okuda-Shimazaki J, Tsugawa W, Loew N, Shitanda I, Lin CE, La Belle J, Sode K.
    Biosens Bioelectron; 2019 Mar 15; 129():189-197. PubMed ID: 30721794
    [Abstract] [Full Text] [Related]

  • 9. Creation of a novel DET type FAD glucose dehydrogenase harboring Escherichia coli derived cytochrome b562 as an electron transfer domain.
    Yanase T, Okuda-Shimazaki J, Mori K, Kojima K, Tsugawa W, Sode K.
    Biochem Biophys Res Commun; 2020 Sep 10; 530(1):82-86. PubMed ID: 32828319
    [Abstract] [Full Text] [Related]

  • 10. Strategic design and improvement of the internal electron transfer of heme b domain-fused glucose dehydrogenase for use in direct electron transfer-type glucose sensors.
    Ito K, Okuda-Shimazaki J, Kojima K, Mori K, Tsugawa W, Asano R, Ikebukuro K, Sode K.
    Biosens Bioelectron; 2021 Mar 15; 176():112911. PubMed ID: 33421758
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. In Vitro Continuous 3 Months Operation of Direct Electron Transfer Type Open Circuit Potential Based Glucose Sensor: Heralding the Next CGM Sensor.
    Lee I, Wakako T, Ikebukuro K, Sode K.
    J Diabetes Sci Technol; 2022 Sep 15; 16(5):1107-1113. PubMed ID: 35466718
    [Abstract] [Full Text] [Related]

  • 13. Biosensing and electrochemical properties of flavin adenine dinucleotide (FAD)-Dependent glucose dehydrogenase (GDH) fused to a gold binding peptide.
    Lee H, Lee YS, Reginald SS, Baek S, Lee EM, Choi IG, Chang IS.
    Biosens Bioelectron; 2020 Oct 01; 165():112427. PubMed ID: 32729543
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Construction of Uniform Monolayer- and Orientation-Tunable Enzyme Electrode by a Synthetic Glucose Dehydrogenase without Electron-Transfer Subunit via Optimized Site-Specific Gold-Binding Peptide Capable of Direct Electron Transfer.
    Lee YS, Baek S, Lee H, Reginald SS, Kim Y, Kang H, Choi IG, Chang IS.
    ACS Appl Mater Interfaces; 2018 Aug 29; 10(34):28615-28626. PubMed ID: 30067023
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Engineered fungus derived FAD-dependent glucose dehydrogenase with acquired ability to utilize hexaammineruthenium(III) as an electron acceptor.
    Okurita M, Suzuki N, Loew N, Yoshida H, Tsugawa W, Mori K, Kojima K, Klonoff DC, Sode K.
    Bioelectrochemistry; 2018 Oct 29; 123():62-69. PubMed ID: 29727765
    [Abstract] [Full Text] [Related]

  • 18. Interfacial electron transfer of glucose oxidase on poly(glutamic acid)-modified glassy carbon electrode and glucose sensing.
    Zhou X, Tan B, Zheng X, Kong D, Li Q.
    Anal Biochem; 2015 Nov 15; 489():9-16. PubMed ID: 26278169
    [Abstract] [Full Text] [Related]

  • 19. Development of a glucose sensor employing quick and easy modification method with mediator for altering electron acceptor preference.
    Hatada M, Loew N, Inose-Takahashi Y, Okuda-Shimazaki J, Tsugawa W, Mulchandani A, Sode K.
    Bioelectrochemistry; 2018 Jun 15; 121():185-190. PubMed ID: 29471242
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.