These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


267 related items for PubMed ID: 29291485

  • 1. Realizing high-rate sulfur reduction under sulfate-rich conditions in a biological sulfide production system to treat metal-laden wastewater deficient in organic matter.
    Sun R, Zhang L, Zhang Z, Chen GH, Jiang F.
    Water Res; 2018 Mar 15; 131():239-245. PubMed ID: 29291485
    [Abstract] [Full Text] [Related]

  • 2. Realizing a high-rate sulfidogenic reactor driven by sulfur-reducing bacteria with organic substrate dosage minimization and cost-effectiveness maximization.
    Guo J, Wang J, Qiu Y, Sun J, Jiang F.
    Chemosphere; 2019 Dec 15; 236():124381. PubMed ID: 31545190
    [Abstract] [Full Text] [Related]

  • 3. pH-dependent biological sulfidogenic processes for metal-laden wastewater treatment: Sulfate reduction or sulfur reduction?
    Guo J, Li Y, Sun J, Sun R, Zhou S, Duan J, Feng W, Liu G, Jiang F.
    Water Res; 2021 Oct 01; 204():117628. PubMed ID: 34507021
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Adaptability of sulfur-disproportionating bacteria for mine water remediation under the pressures of heavy metal ions and high sulfate content.
    Qiu YY, Zou J, Xia J, Li H, Zhen Y, Yang Y, Guo J, Zhang L, Qiu R, Jiang F.
    Water Res; 2024 Feb 01; 249():120898. PubMed ID: 38086206
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Interactions of functional bacteria and their contributions to the performance in integrated autotrophic and heterotrophic denitrification.
    Zhang RC, Xu XJ, Chen C, Xing DF, Shao B, Liu WZ, Wang AJ, Lee DJ, Ren NQ.
    Water Res; 2018 Oct 15; 143():355-366. PubMed ID: 29986245
    [Abstract] [Full Text] [Related]

  • 13. Biogenic sulfur recovery from sulfate-laden antibiotic production wastewater using a single-chamber up-flow bioelectrochemical reactor.
    Tang L, Huang J, Zhuang C, Yang X, Sun L, Lu H.
    Water Res; 2024 Jun 01; 256():121590. PubMed ID: 38631241
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Treatment of high-strength sulfate wastewater using an autotrophic biocathode in view of elemental sulfur recovery.
    Blázquez E, Gabriel D, Baeza JA, Guisasola A.
    Water Res; 2016 Nov 15; 105():395-405. PubMed ID: 27662048
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Effect of sulfide removal on sulfate reduction at pH 5 in a hydrogen fed gas-lift bioreactor.
    Bijmans MF, Dopson M, Ennin F, Lens PN, Buisman CJ.
    J Microbiol Biotechnol; 2008 Nov 15; 18(11):1809-18. PubMed ID: 19047826
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.