These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
429 related items for PubMed ID: 29298387
1. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment. Elgowainy A, Han J, Ward J, Joseck F, Gohlke D, Lindauer A, Ramsden T, Biddy M, Alexander M, Barnhart S, Sutherland I, Verduzco L, Wallington TJ. Environ Sci Technol; 2018 Feb 20; 52(4):2392-2399. PubMed ID: 29298387 [Abstract] [Full Text] [Related]
2. Provincial Greenhouse Gas Emissions of Gasoline and Plug-in Electric Vehicles in China: Comparison from the Consumption-Based Electricity Perspective. Gan Y, Lu Z, He X, Hao C, Wang Y, Cai H, Wang M, Elgowainy A, Przesmitzki S, Bouchard J. Environ Sci Technol; 2021 May 18; 55(10):6944-6956. PubMed ID: 33945267 [Abstract] [Full Text] [Related]
3. Life Cycle Assessment of Vehicle Lightweighting: A Physics-Based Model To Estimate Use-Phase Fuel Consumption of Electrified Vehicles. Kim HC, Wallington TJ. Environ Sci Technol; 2016 Oct 18; 50(20):11226-11233. PubMed ID: 27533735 [Abstract] [Full Text] [Related]
4. Greenhouse gas emission benefits of adopting new energy vehicles in Suzhou City, China: A case study. Da C, Gu X, Lu C, Hua R, Chang X, Cheng Y, Qian F, Wang Y. Environ Sci Pollut Res Int; 2022 Oct 18; 29(50):76286-76297. PubMed ID: 35668254 [Abstract] [Full Text] [Related]
5. Well-to-wheel greenhouse gas emissions of electric versus combustion vehicles from 2018 to 2030 in the US. Challa R, Kamath D, Anctil A. J Environ Manage; 2022 Apr 15; 308():114592. PubMed ID: 35121453 [Abstract] [Full Text] [Related]
6. A life-cycle comparison of alternative automobile fuels. MacLean HL, Lave LB, Lankey R, Joshi S. J Air Waste Manag Assoc; 2000 Oct 15; 50(10):1769-79. PubMed ID: 11288305 [Abstract] [Full Text] [Related]
7. Comparison of life cycle greenhouse gases from natural gas pathways for medium and heavy-duty vehicles. Tong F, Jaramillo P, Azevedo IM. Environ Sci Technol; 2015 Jun 16; 49(12):7123-33. PubMed ID: 25938939 [Abstract] [Full Text] [Related]
8. Regional Heterogeneity in the Emissions Benefits of Electrified and Lightweighted Light-Duty Vehicles. Wu D, Guo F, Field FR, De Kleine RD, Kim HC, Wallington TJ, Kirchain RE. Environ Sci Technol; 2019 Sep 17; 53(18):10560-10570. PubMed ID: 31336049 [Abstract] [Full Text] [Related]
9. Should India Move toward Vehicle Electrification? Assessing Life-Cycle Greenhouse Gas and Criteria Air Pollutant Emissions of Alternative and Conventional Fuel Vehicles in India. Peshin T, Sengupta S, Azevedo IML. Environ Sci Technol; 2022 Jul 05; 56(13):9569-9582. PubMed ID: 35696339 [Abstract] [Full Text] [Related]
10. Emission Impacts of Electric Vehicles in the US Transportation Sector Following Optimistic Cost and Efficiency Projections. Keshavarzmohammadian A, Henze DK, Milford JB. Environ Sci Technol; 2017 Jun 20; 51(12):6665-6673. PubMed ID: 28399368 [Abstract] [Full Text] [Related]
11. Alternative Fuel Vehicle Adoption Increases Fleet Gasoline Consumption and Greenhouse Gas Emissions under United States Corporate Average Fuel Economy Policy and Greenhouse Gas Emissions Standards. Jenn A, Azevedo IM, Michalek JJ. Environ Sci Technol; 2016 Mar 01; 50(5):2165-74. PubMed ID: 26867100 [Abstract] [Full Text] [Related]
12. A Life-Cycle Comparison of Alternative Automobile Fuels. MacLean HL, Lave LB, Lankey R, Joshi S. J Air Waste Manag Assoc; 2000 Oct 01; 50(10):1769-1779. PubMed ID: 28076232 [Abstract] [Full Text] [Related]
13. China Electricity Generation Greenhouse Gas Emission Intensity in 2030: Implications for Electric Vehicles. Shen W, Han W, Wallington TJ, Winkler SL. Environ Sci Technol; 2019 May 21; 53(10):6063-6072. PubMed ID: 31021614 [Abstract] [Full Text] [Related]
14. Implications of driving patterns on well-to-wheel performance of plug-in hybrid electric vehicles. Raykin L, MacLean HL, Roorda MJ. Environ Sci Technol; 2012 Jun 05; 46(11):6363-70. PubMed ID: 22568681 [Abstract] [Full Text] [Related]
15. Unregulated greenhouse gas and ammonia emissions from current technology heavy-duty vehicles. Thiruvengadam A, Besch M, Carder D, Oshinuga A, Pasek R, Hogo H, Gautam M. J Air Waste Manag Assoc; 2016 Nov 05; 66(11):1045-1060. PubMed ID: 26950051 [Abstract] [Full Text] [Related]
16. The impacts from cold start and road grade on real-world emissions and fuel consumption of gasoline, diesel and hybrid-electric light-duty passenger vehicles. He L, You Y, Zheng X, Zhang S, Li Z, Zhang Z, Wu Y, Hao J. Sci Total Environ; 2022 Dec 10; 851(Pt 1):158045. PubMed ID: 35981594 [Abstract] [Full Text] [Related]
17. Which type of electric vehicle is worth promoting mostly in the context of carbon peaking and carbon neutrality? A case study for a metropolis in China. Yu Y, Xu H, Cheng J, Wan F, Ju L, Liu Q, Liu J. Sci Total Environ; 2022 Sep 01; 837():155626. PubMed ID: 35504393 [Abstract] [Full Text] [Related]
18. Climate and environmental effects of electric vehicles versus compressed natural gas vehicles in China: a life-cycle analysis at provincial level. Huo H, Zhang Q, Liu F, He K. Environ Sci Technol; 2013 Feb 05; 47(3):1711-8. PubMed ID: 23276251 [Abstract] [Full Text] [Related]