These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


506 related items for PubMed ID: 29301415

  • 1. pH-sensitive polymeric nanoparticles of mPEG-PLGA-PGlu with hybrid core for simultaneous encapsulation of curcumin and doxorubicin to kill the heterogeneous tumour cells in breast cancer.
    Yuan JD, ZhuGe DL, Tong MQ, Lin MT, Xu XF, Tang X, Zhao YZ, Xu HL.
    Artif Cells Nanomed Biotechnol; 2018; 46(sup1):302-313. PubMed ID: 29301415
    [Abstract] [Full Text] [Related]

  • 2. Dual-responsive mPEG-PLGA-PGlu hybrid-core nanoparticles with a high drug loading to reverse the multidrug resistance of breast cancer: an in vitro and in vivo evaluation.
    Xu H, Yang D, Cai C, Gou J, Zhang Y, Wang L, Zhong H, Tang X.
    Acta Biomater; 2015 Apr; 16():156-68. PubMed ID: 25662165
    [Abstract] [Full Text] [Related]

  • 3. Self-Assembled Monomethoxy (Polyethylene Glycol)-b-P(D,L-Lactic-co-Glycolic Acid)-b-P(L-Glutamic Acid) Hybrid-Core Nanoparticles for Intracellular pH-Triggered Release of Doxorubicin.
    Xu H, Cai C, Gou J, Sui B, Jin J, Xu H, Zhang Y, Wang L, Zhai Y, Tang X.
    J Biomed Nanotechnol; 2015 Aug; 11(8):1354-69. PubMed ID: 26295138
    [Abstract] [Full Text] [Related]

  • 4. Synergistic breast tumor cell killing achieved by intracellular co-delivery of doxorubicin and disulfiram via core-shell-corona nanoparticles.
    Tao X, Gou J, Zhang Q, Tan X, Ren T, Yao Q, Tian B, Kou L, Zhang L, Tang X.
    Biomater Sci; 2018 Jun 25; 6(7):1869-1881. PubMed ID: 29808221
    [Abstract] [Full Text] [Related]

  • 5. A co-delivery system based on paclitaxel grafted mPEG-b-PLG loaded with doxorubicin: preparation, in vitro and in vivo evaluation.
    Li Q, Lv S, Tang Z, Liu M, Zhang D, Yang Y, Chen X.
    Int J Pharm; 2014 Aug 25; 471(1-2):412-20. PubMed ID: 24905776
    [Abstract] [Full Text] [Related]

  • 6. pH-sensitive polymeric nanoparticles for co-delivery of doxorubicin and curcumin to treat cancer via enhanced pro-apoptotic and anti-angiogenic activities.
    Zhang J, Li J, Shi Z, Yang Y, Xie X, Lee SM, Wang Y, Leong KW, Chen M.
    Acta Biomater; 2017 Aug 25; 58():349-364. PubMed ID: 28455219
    [Abstract] [Full Text] [Related]

  • 7. Star polyester-based folate acid-targeting nanoparticles for doxorubicin and curcumin co-delivery to combat multidrug-resistant breast cancer.
    Guo F, Yu N, Jiao Y, Hong W, Zhou K, Ji X, Yuan H, Wang H, Li A, Wang G, Yang G.
    Drug Deliv; 2021 Dec 25; 28(1):1709-1721. PubMed ID: 34463174
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Multifunctional Polyethylene Glycol (PEG)-Poly (Lactic-Co-Glycolic Acid) (PLGA)-Based Nanoparticles Loading Doxorubicin and Tetrahydrocurcumin for Combined Chemoradiotherapy of Glioma.
    Zhang X, Zhao L, Zhai G, Ji J, Liu A.
    Med Sci Monit; 2019 Dec 19; 25():9737-9751. PubMed ID: 31856143
    [Abstract] [Full Text] [Related]

  • 12. Co-delivery of hydrophilic and hydrophobic drugs by micelles: a new approach using drug conjugated PEG-PCLNanoparticles.
    Danafar H, Rostamizadeh K, Davaran S, Hamidi M.
    Drug Dev Ind Pharm; 2017 Nov 19; 43(11):1908-1918. PubMed ID: 28737462
    [Abstract] [Full Text] [Related]

  • 13. Regulation of particle morphology of pH-dependent poly(epsilon-caprolactone)-poly(gamma-glutamic acid) micellar nanoparticles to combat breast cancer cells.
    Chan AS, Chen CH, Huang CM, Hsieh MF.
    J Nanosci Nanotechnol; 2010 Oct 19; 10(10):6283-97. PubMed ID: 21137721
    [Abstract] [Full Text] [Related]

  • 14. A complex micellar system co-delivering curcumin with doxorubicin against cardiotoxicity and tumor growth.
    Zhang D, Xu Q, Wang N, Yang Y, Liu J, Yu G, Yang X, Xu H, Wang H.
    Int J Nanomedicine; 2018 Oct 19; 13():4549-4561. PubMed ID: 30127606
    [Abstract] [Full Text] [Related]

  • 15. pH-Responsive chimaeric pepsomes based on asymmetric poly(ethylene glycol)-b-poly(l-leucine)-b-poly(l-glutamic acid) triblock copolymer for efficient loading and active intracellular delivery of doxorubicin hydrochloride.
    Chen P, Qiu M, Deng C, Meng F, Zhang J, Cheng R, Zhong Z.
    Biomacromolecules; 2015 Apr 13; 16(4):1322-30. PubMed ID: 25759951
    [Abstract] [Full Text] [Related]

  • 16. Co-delivery of Doxorubicin and D-α-Tocopherol Polyethylene Glycol 1000 Succinate by Magnetic Nanoparticles.
    Metin E, Mutlu P, Gündüz U.
    Anticancer Agents Med Chem; 2018 Apr 13; 18(8):1138-1147. PubMed ID: 29532763
    [Abstract] [Full Text] [Related]

  • 17. A glutathione-responsive sulfur dioxide polymer prodrug as a nanocarrier for combating drug-resistance in cancer chemotherapy.
    Shen W, Liu W, Yang H, Zhang P, Xiao C, Chen X.
    Biomaterials; 2018 Sep 13; 178():706-719. PubMed ID: 29433753
    [Abstract] [Full Text] [Related]

  • 18. EGF-modified mPEG-PLGA-PLL nanoparticle for delivering doxorubicin combined with Bcl-2 siRNA as a potential treatment strategy for lung cancer.
    Zhang X, Wang Q, Qin L, Fu H, Fang Y, Han B, Duan Y.
    Drug Deliv; 2016 Oct 13; 23(8):2936-2945. PubMed ID: 26739487
    [Abstract] [Full Text] [Related]

  • 19. Enhanced 4T1 breast carcinoma anticancer activity by co-delivery of doxorubicin and curcumin with core-shell drug-carrier based on heparin modified poly(L-lactide) grafted polyethylenimine cationic nanoparticles.
    Guo O, Li X, Yang Y, Wei J, Zhao Q, Luo F, Qian Z.
    J Biomed Nanotechnol; 2014 Feb 13; 10(2):227-37. PubMed ID: 24738331
    [Abstract] [Full Text] [Related]

  • 20. Co-delivery of Doxorubicin and Curcumin with Polypeptide Nanocarrier for Synergistic Lymphoma Therapy.
    Guo W, Song Y, Song W, Liu Y, Liu Z, Zhang D, Tang Z, Bai O.
    Sci Rep; 2020 May 12; 10(1):7832. PubMed ID: 32398729
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 26.