These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
354 related items for PubMed ID: 29311218
1. Sirt1: A Guardian of the Development of Diabetic Retinopathy. Mishra M, Duraisamy AJ, Kowluru RA. Diabetes; 2018 Apr; 67(4):745-754. PubMed ID: 29311218 [Abstract] [Full Text] [Related]
2. Molecular Mechanism of Transcriptional Regulation of Matrix Metalloproteinase-9 in Diabetic Retinopathy. Mishra M, Flaga J, Kowluru RA. J Cell Physiol; 2016 Aug; 231(8):1709-18. PubMed ID: 26599598 [Abstract] [Full Text] [Related]
3. Diabetic retinopathy and transcriptional regulation of a small molecular weight G-Protein, Rac1. Kowluru RA, Mishra M, Kumar B. Exp Eye Res; 2016 Jun; 147():72-77. PubMed ID: 27109029 [Abstract] [Full Text] [Related]
4. Neutrophil elastase contributes to the pathological vascular permeability characteristic of diabetic retinopathy. Liu H, Lessieur EM, Saadane A, Lindstrom SI, Taylor PR, Kern TS. Diabetologia; 2019 Dec; 62(12):2365-2374. PubMed ID: 31612267 [Abstract] [Full Text] [Related]
5. Mitochondrial fusion and maintenance of mitochondrial homeostasis in diabetic retinopathy. Duraisamy AJ, Mohammad G, Kowluru RA. Biochim Biophys Acta Mol Basis Dis; 2019 Jun 01; 1865(6):1617-1626. PubMed ID: 30922813 [Abstract] [Full Text] [Related]
6. BTBR ob/ob mouse model of type 2 diabetes exhibits early loss of retinal function and retinal inflammation followed by late vascular changes. Lee VK, Hosking BM, Holeniewska J, Kubala EC, Lundh von Leithner P, Gardner PJ, Foxton RH, Shima DT. Diabetologia; 2018 Nov 01; 61(11):2422-2432. PubMed ID: 30094465 [Abstract] [Full Text] [Related]
7. Role of PARP-1 as a novel transcriptional regulator of MMP-9 in diabetic retinopathy. Mishra M, Kowluru RA. Biochim Biophys Acta Mol Basis Dis; 2017 Jul 01; 1863(7):1761-1769. PubMed ID: 28478229 [Abstract] [Full Text] [Related]
8. Fasting and fasting-mimicking treatment activate SIRT1/LXRα and alleviate diabetes-induced systemic and microvascular dysfunction. Hammer SS, Vieira CP, McFarland D, Sandler M, Levitsky Y, Dorweiler TF, Lydic TA, Asare-Bediako B, Adu-Agyeiwaah Y, Sielski MS, Dupont M, Longhini AL, Li Calzi S, Chakraborty D, Seigel GM, Proshlyakov DA, Grant MB, Busik JV. Diabetologia; 2021 Jul 01; 64(7):1674-1689. PubMed ID: 33770194 [Abstract] [Full Text] [Related]
9. Epigenetic Modifications Compromise Mitochondrial DNA Quality Control in the Development of Diabetic Retinopathy. Mohammad G, Radhakrishnan R, Kowluru RA. Invest Ophthalmol Vis Sci; 2019 Sep 03; 60(12):3943-3951. PubMed ID: 31546260 [Abstract] [Full Text] [Related]
10. miR-23b-3p induces the cellular metabolic memory of high glucose in diabetic retinopathy through a SIRT1-dependent signalling pathway. Zhao S, Li T, Li J, Lu Q, Han C, Wang N, Qiu Q, Cao H, Xu X, Chen H, Zheng Z. Diabetologia; 2016 Mar 03; 59(3):644-54. PubMed ID: 26687158 [Abstract] [Full Text] [Related]
11. Molecular analysis of blood-retinal barrier loss in the Akimba mouse, a model of advanced diabetic retinopathy. Wisniewska-Kruk J, Klaassen I, Vogels IM, Magno AL, Lai CM, Van Noorden CJ, Schlingemann RO, Rakoczy EP. Exp Eye Res; 2014 May 03; 122():123-31. PubMed ID: 24703908 [Abstract] [Full Text] [Related]
12. Photoreceptor cells produce inflammatory products that contribute to retinal vascular permeability in a mouse model of diabetes. Tonade D, Liu H, Palczewski K, Kern TS. Diabetologia; 2017 Oct 03; 60(10):2111-2120. PubMed ID: 28755268 [Abstract] [Full Text] [Related]
13. Montelukast Prevents Early Diabetic Retinopathy in Mice. Bapputty R, Talahalli R, Zarini S, Samuels I, Murphy R, Gubitosi-Klug R. Diabetes; 2019 Oct 03; 68(10):2004-2015. PubMed ID: 31350303 [Abstract] [Full Text] [Related]
14. Α-Melanocyte-Stimulating Hormone Protects Early Diabetic Retina from Blood-Retinal Barrier Breakdown and Vascular Leakage via MC4R. Cai S, Yang Q, Hou M, Han Q, Zhang H, Wang J, Qi C, Bo Q, Ru Y, Yang W, Gu Z, Wei R, Cao Y, Li X, Zhang Y. Cell Physiol Biochem; 2018 Oct 03; 45(2):505-522. PubMed ID: 29402864 [Abstract] [Full Text] [Related]
15. Role of oxidative stress in epigenetic modification of MMP-9 promoter in the development of diabetic retinopathy. Kowluru RA, Shan Y. Graefes Arch Clin Exp Ophthalmol; 2017 May 03; 255(5):955-962. PubMed ID: 28124145 [Abstract] [Full Text] [Related]
16. VEGF-initiated blood-retinal barrier breakdown in early diabetes. Qaum T, Xu Q, Joussen AM, Clemens MW, Qin W, Miyamoto K, Hassessian H, Wiegand SJ, Rudge J, Yancopoulos GD, Adamis AP. Invest Ophthalmol Vis Sci; 2001 Sep 03; 42(10):2408-13. PubMed ID: 11527957 [Abstract] [Full Text] [Related]
17. Vascular damage in a mouse model of diabetic retinopathy: relation to neuronal and glial changes. Feit-Leichman RA, Kinouchi R, Takeda M, Fan Z, Mohr S, Kern TS, Chen DF. Invest Ophthalmol Vis Sci; 2005 Nov 03; 46(11):4281-7. PubMed ID: 16249509 [Abstract] [Full Text] [Related]
18. Suppression of protein kinase C-ζ attenuates vascular leakage via prevention of tight junction protein decrease in diabetic retinopathy. Song HB, Jun HO, Kim JH, Yu YS, Kim KW, Kim JH. Biochem Biophys Res Commun; 2014 Jan 31; 444(1):63-8. PubMed ID: 24434146 [Abstract] [Full Text] [Related]
19. Therapeutic Effects of a Novel Agonist of Peroxisome Proliferator-Activated Receptor Alpha for the Treatment of Diabetic Retinopathy. Deng G, Moran EP, Cheng R, Matlock G, Zhou K, Moran D, Chen D, Yu Q, Ma JX. Invest Ophthalmol Vis Sci; 2017 Oct 01; 58(12):5030-5042. PubMed ID: 28979999 [Abstract] [Full Text] [Related]
20. IκB kinase-β inhibitor IMD-0354 beneficially suppresses retinal vascular permeability in streptozotocin-induced diabetic mice. Lennikov A, Hiraoka M, Abe A, Ohno S, Fujikawa T, Itai A, Ohguro H. Invest Ophthalmol Vis Sci; 2014 Sep 09; 55(10):6365-73. PubMed ID: 25205865 [Abstract] [Full Text] [Related] Page: [Next] [New Search]