These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


133 related items for PubMed ID: 2931579

  • 1. Exercise-induced myocardial capillary growth in the spontaneously hypertensive rat.
    Crisman RP, Rittman B, Tomanek RJ.
    Microvasc Res; 1985 Sep; 30(2):185-94. PubMed ID: 2931579
    [Abstract] [Full Text] [Related]

  • 2. Coronary vasodilator reserve, capillarity, and mitochondria in trained hypertensive rats.
    Tomanek RJ, Gisolfi CV, Bauer CA, Palmer PJ.
    J Appl Physiol (1985); 1988 Mar; 64(3):1179-85. PubMed ID: 2966793
    [Abstract] [Full Text] [Related]

  • 3. Relationship between cardiovascular hypertrophy and cardiac baroreflex function in spontaneously hypertensive and stroke-prone rats.
    Minami N, Head GA.
    J Hypertens; 1993 May; 11(5):523-33. PubMed ID: 8390524
    [Abstract] [Full Text] [Related]

  • 4. Vascular remodeling and improvement of coronary reserve after hydralazine treatment in spontaneously hypertensive rats.
    Anderson PG, Bishop SP, Digerness SB.
    Circ Res; 1989 Jun; 64(6):1127-36. PubMed ID: 2524290
    [Abstract] [Full Text] [Related]

  • 5. Cardiac benefits of exercise training in aging spontaneously hypertensive rats.
    Rossoni LV, Oliveira RA, Caffaro RR, Miana M, Sanz-Rosa D, Koike MK, Do Amaral SL, Michelini LC, Lahera V, Cachofeiro V.
    J Hypertens; 2011 Dec; 29(12):2349-58. PubMed ID: 22045123
    [Abstract] [Full Text] [Related]

  • 6. Sympathetic nerves modify mitochondrial and capillary growth in normotensive and hypertensive rats.
    Tomanek RJ.
    J Mol Cell Cardiol; 1989 Aug; 21(8):755-64. PubMed ID: 2528641
    [Abstract] [Full Text] [Related]

  • 7. Myocardial hypoperfusion/reperfusion tolerance with exercise training in hypertension.
    Reger PO, Barbe MF, Amin M, Renna BF, Hewston LA, MacDonnell SM, Houser SR, Libonati JR.
    J Appl Physiol (1985); 2006 Feb; 100(2):541-7. PubMed ID: 16223983
    [Abstract] [Full Text] [Related]

  • 8. Left ventricular remodeling with exercise in hypertension.
    Kolwicz SC, MacDonnell SM, Renna BF, Reger PO, Seqqat R, Rafiq K, Kendrick ZV, Houser SR, Sabri A, Libonati JR.
    Am J Physiol Heart Circ Physiol; 2009 Oct; 297(4):H1361-8. PubMed ID: 19666835
    [Abstract] [Full Text] [Related]

  • 9. Role of cardiac hypertrophy in reducing the sensitivity of cardiopulmonary reflex control of renal sympathetic nerve activity in spontaneously hypertensive rats.
    de Andrade TU, Abreu GR, Moysés MR, de Melo Cabral A, Bissoli NS.
    Clin Exp Pharmacol Physiol; 2008 Sep; 35(9):1104-8. PubMed ID: 18788121
    [Abstract] [Full Text] [Related]

  • 10. Exercise training modifies myocardial mitochondria and myofibril growth in spontaneously hypertensive rats.
    Crisman RP, Tomanek RJ.
    Am J Physiol; 1985 Jan; 248(1 Pt 2):H8-14. PubMed ID: 3970178
    [Abstract] [Full Text] [Related]

  • 11. Long-term exercise training and angiotensin-converting enzyme inhibition differentially enhance myocardial capillarization in the spontaneously hypertensive rat.
    Ziada AM, Hassan MO, Tahlilkar KI, Inuwa IM.
    J Hypertens; 2005 Jun; 23(6):1233-40. PubMed ID: 15894900
    [Abstract] [Full Text] [Related]

  • 12. Myocardial capillary density in hypertensive rats.
    Odek-Ogunde M.
    Lab Invest; 1982 Jan; 46(1):54-60. PubMed ID: 7054590
    [Abstract] [Full Text] [Related]

  • 13. Functional and stereologic estimations of myocardial capillary exchange capacity in treated and untreated spontaneously hypertensive rats.
    Wåhlander H, Nordborg C, Nordlander M, Friberg P.
    Acta Physiol Scand; 1992 Oct; 146(2):165-75. PubMed ID: 1442132
    [Abstract] [Full Text] [Related]

  • 14. Effects of long-term cardiac hypertrophy on coronary vasodilator reserve in SHR rats.
    Peters KG, Wangler RD, Tomanek RJ, Marcus ML.
    Am J Cardiol; 1984 Dec 01; 54(10):1342-8. PubMed ID: 6239536
    [Abstract] [Full Text] [Related]

  • 15. Moderate Exercise in Spontaneously Hypertensive Rats Is Unable to Activate the Expression of Genes Linked to Mitochondrial Dynamics and Biogenesis in Cardiomyocytes.
    Quiroga C, Mancilla G, Oyarzun I, Tapia A, Caballero M, Gabrielli LA, Valladares-Ide D, Del Campo A, Castro PF, Verdejo HE.
    Front Endocrinol (Lausanne); 2020 Dec 01; 11():546. PubMed ID: 32973679
    [Abstract] [Full Text] [Related]

  • 16. Relative systolic dysfunction in female spontaneously hypertensive rat myocardium.
    Renna BF, MacDonnell SM, Reger PO, Crabbe DL, Houser SR, Libonati JR.
    J Appl Physiol (1985); 2007 Jul 01; 103(1):353-8. PubMed ID: 17431084
    [Abstract] [Full Text] [Related]

  • 17. Compensated function in hypertrophied ventricles of Wistar Kyoto and spontaneously hypertensive rats.
    Tomanek RJ, Whitaker MT.
    Cardiovasc Res; 1990 Mar 01; 24(3):204-9. PubMed ID: 2140712
    [Abstract] [Full Text] [Related]

  • 18. Spirapril prevents left ventricular hypertrophy, decreases myocardial damage and promotes angiogenesis in spontaneously hypertensive rats.
    Olivetti G, Cigola E, Lagrasta C, Ricci R, Quaini F, Monopoli A, Ongini E.
    J Cardiovasc Pharmacol; 1993 Mar 01; 21(3):362-70. PubMed ID: 7681495
    [Abstract] [Full Text] [Related]

  • 19. Capillary and pre-capillary coronary vascular growth during left ventricular hypertrophy.
    Tomanek RJ.
    Can J Cardiol; 1986 Mar 01; 2(2):114-9. PubMed ID: 2423211
    [Abstract] [Full Text] [Related]

  • 20. Is gender crucial for cardiovascular adjustments induced by exercise training in female spontaneously hypertensive rats?
    Coimbra R, Sanchez LS, Potenza JM, Rossoni LV, Amaral SL, Michelini LC.
    Hypertension; 2008 Sep 01; 52(3):514-21. PubMed ID: 18695147
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.