These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


168 related items for PubMed ID: 29318813

  • 1. Red fluorescence of dental biofilm as an indicator for assessing the efficacy of antimicrobials.
    Lee ES, de Josselin de Jong E, Jung HI, Kim BI.
    J Biomed Opt; 2018 Jan; 23(1):1-6. PubMed ID: 29318813
    [Abstract] [Full Text] [Related]

  • 2. Association between the cariogenicity of a dental microcosm biofilm and its red fluorescence detected by Quantitative Light-induced Fluorescence-Digital (QLF-D).
    Lee ES, Kang SM, Ko HY, Kwon HK, Kim BI.
    J Dent; 2013 Dec; 41(12):1264-70. PubMed ID: 24012520
    [Abstract] [Full Text] [Related]

  • 3. Monitoring the maturation process of a dental microcosm biofilm using the Quantitative Light-induced Fluorescence-Digital (QLF-D).
    Kim YS, Lee ES, Kwon HK, Kim BI.
    J Dent; 2014 Jun; 42(6):691-6. PubMed ID: 24657554
    [Abstract] [Full Text] [Related]

  • 4. Anti-biofilm activity of chlorhexidine-releasing elastomerics against dental microcosm biofilms.
    Choi JH, Jung EH, Lee ES, Jung HI, Kim BI.
    J Dent; 2022 Jul; 122():104153. PubMed ID: 35526753
    [Abstract] [Full Text] [Related]

  • 5. Microcosm biofilms originating from children with different caries experience have similar cariogenicity under successive sucrose challenges.
    Azevedo MS, van de Sande FH, Romano AR, Cenci MS.
    Caries Res; 2011 Jul; 45(6):510-7. PubMed ID: 21967836
    [Abstract] [Full Text] [Related]

  • 6. Effect of sodium fluoride on oral biofilm microbiota and enamel demineralization.
    Thurnheer T, Belibasakis GN.
    Arch Oral Biol; 2018 May; 89():77-83. PubMed ID: 29482049
    [Abstract] [Full Text] [Related]

  • 7. Correlation between the cariogenic response in biofilms generated from saliva of mother/child pairs.
    Azevedo MS, van de Sande FH, Maske TT, Signori C, Romano AR, Cenci MS.
    Biofouling; 2014 Sep; 30(8):903-9. PubMed ID: 25184431
    [Abstract] [Full Text] [Related]

  • 8. The role of human milk and sucrose on cariogenicity of microcosm biofilms.
    Signori C, Hartwig AD, Silva-Júnior IFD, Correa MB, Azevedo MS, Cenci MS.
    Braz Oral Res; 2018 Oct 11; 32():e109. PubMed ID: 30328901
    [Abstract] [Full Text] [Related]

  • 9. An in vitro dynamic microcosm biofilm model for caries lesion development and antimicrobial dose-response studies.
    Maske TT, Brauner KV, Nakanishi L, Arthur RA, van de Sande FH, Cenci MS.
    Biofouling; 2016 Oct 11; 32(3):339-48. PubMed ID: 26905384
    [Abstract] [Full Text] [Related]

  • 10. Real-time microsensor measurement of local metabolic activities in ex vivo dental biofilms exposed to sucrose and treated with chlorhexidine.
    von Ohle C, Gieseke A, Nistico L, Decker EM, DeBeer D, Stoodley P.
    Appl Environ Microbiol; 2010 Apr 11; 76(7):2326-34. PubMed ID: 20118374
    [Abstract] [Full Text] [Related]

  • 11. Response of single species biofilms and microcosm dental plaques to pulsing with chlorhexidine.
    Pratten J, Smith AW, Wilson M.
    J Antimicrob Chemother; 1998 Oct 11; 42(4):453-9. PubMed ID: 9818743
    [Abstract] [Full Text] [Related]

  • 12. Influence of the Inoculum Source on the Cariogenicity of in vitro Microcosm Biofilms.
    Signori C, van de Sande FH, Maske TT, de Oliveira EF, Cenci MS.
    Caries Res; 2016 Oct 11; 50(2):97-103. PubMed ID: 26919718
    [Abstract] [Full Text] [Related]

  • 13. Antimicrobial activity of Melaleuca alternifolia nanoparticles in polymicrobial biofilm in situ.
    de Souza ME, Clerici DJ, Verdi CM, Fleck G, Quatrin PM, Spat LE, Bonez PC, Santos CFD, Antoniazzi RP, Zanatta FB, Gundel A, Martinez DST, de Almeida Vaucher R, Santos RCV.
    Microb Pathog; 2017 Dec 11; 113():432-437. PubMed ID: 29162482
    [Abstract] [Full Text] [Related]

  • 14. Action of food preservatives on 14-days dental biofilm formation, biofilm vitality and biofilm-derived enamel demineralisation in situ.
    Arweiler NB, Netuschil L, Beier D, Grunert S, Heumann C, Altenburger MJ, Sculean A, Nagy K, Al-Ahmad A, Auschill TM.
    Clin Oral Investig; 2014 Apr 11; 18(3):829-38. PubMed ID: 23907470
    [Abstract] [Full Text] [Related]

  • 15. Analysis of the antimicrobial and anti-caries effects of TiF4 varnish under microcosm biofilm formed on enamel.
    Souza BM, Fernandes Neto C, Salomão PMA, Vasconcelos LRSM, Andrade FB, Magalhães AC.
    J Appl Oral Sci; 2018 Apr 11; 26():e20170304. PubMed ID: 29489933
    [Abstract] [Full Text] [Related]

  • 16. Antimicrobial Effects of Non-Thermal Atmospheric Pressure Plasma on Oral Microcosm Biofilms.
    Lee J, Cho S, Kim HE.
    Int J Environ Res Public Health; 2023 Jan 30; 20(3):. PubMed ID: 36767814
    [Abstract] [Full Text] [Related]

  • 17. An in vitro biofilm model for enamel demineralization and antimicrobial dose-response studies.
    van de Sande FH, Azevedo MS, Lund RG, Huysmans MC, Cenci MS.
    Biofouling; 2011 Oct 30; 27(9):1057-63. PubMed ID: 22044385
    [Abstract] [Full Text] [Related]

  • 18. Effect of fluoridated milk on enamel and root dentin demineralization evaluated by a biofilm caries model.
    Giacaman RA, Muñoz MJ, Ccahuana-Vasquez RA, Muñoz-Sandoval C, Cury JA.
    Caries Res; 2012 Oct 30; 46(5):460-6. PubMed ID: 22759448
    [Abstract] [Full Text] [Related]

  • 19. Effects of different antibacterial agents on enamel in a biofilm caries model.
    Savas S, Kucukyılmaz E, Celik EU, Ates M.
    J Oral Sci; 2015 Oct 30; 57(4):367-72. PubMed ID: 26666861
    [Abstract] [Full Text] [Related]

  • 20. Effect of a mouthrinse containing Malva sylvestris on the viability and activity of microcosm biofilm and on enamel demineralization compared to known antimicrobials mouthrinses.
    Braga AS, Pires JG, Magalhães AC.
    Biofouling; 2018 Mar 30; 34(3):252-261. PubMed ID: 29430962
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.