These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


267 related items for PubMed ID: 29319076

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Lateral and flexural phonon thermal transport in graphene and stanene bilayers.
    Hong Y, Zhu C, Ju M, Zhang J, Zeng XC.
    Phys Chem Chem Phys; 2017 Mar 01; 19(9):6554-6562. PubMed ID: 28197566
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Phonon Thermal Transport across Multilayer Graphene/Hexagonal Boron Nitride van der Waals Heterostructures.
    Wu X, Han Q.
    ACS Appl Mater Interfaces; 2021 Jul 14; 13(27):32564-32578. PubMed ID: 34196535
    [Abstract] [Full Text] [Related]

  • 6. Superhigh out-of-plane piezoelectricity, low thermal conductivity and photocatalytic abilities in ultrathin 2D van der Waals heterostructures of boron monophosphide and gallium nitride.
    Mohanta MK, Rawat A, Dimple, Jena N, Ahammed R, De Sarkar A.
    Nanoscale; 2019 Nov 21; 11(45):21880-21890. PubMed ID: 31697290
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Phonon Thermal Transport in Silicene/Graphene Heterobilayer Nanostructures: Effect of Interlayer Interactions.
    Zhou J, Li H, Tang HK, Shao L, Han K, Shen X.
    ACS Omega; 2022 Feb 22; 7(7):5844-5852. PubMed ID: 35224345
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Reduced Thermal Transport in the Graphene/MoS2/Graphene Heterostructure: A Comparison with Freestanding Monolayers.
    Srinivasan S, Balasubramanian G.
    Langmuir; 2018 Mar 13; 34(10):3326-3335. PubMed ID: 29429341
    [Abstract] [Full Text] [Related]

  • 11. Molecular Dynamics Simulation on In-Plane Thermal Conductivity of Graphene/Hexagonal Boron Nitride van der Waals Heterostructures.
    Yang Y, Ma J, Yang J, Zhang Y.
    ACS Appl Mater Interfaces; 2022 Oct 12; 14(40):45742-45751. PubMed ID: 36172714
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Electronic properties of a two-dimensional van der Waals MoGe2N4/MoSi2N4 heterobilayer: effect of the insertion of a graphene layer and interlayer coupling.
    Pham DK.
    RSC Adv; 2021 Aug 23; 11(46):28659-28666. PubMed ID: 35478545
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Thermal Rectification in Asymmetric Graphene/Hexagonal Boron Nitride van der Waals Heterostructures.
    Chen XK, Pang M, Chen T, Du D, Chen KQ.
    ACS Appl Mater Interfaces; 2020 Apr 01; 12(13):15517-15526. PubMed ID: 32153173
    [Abstract] [Full Text] [Related]

  • 19. Monolayer and bilayer polyaniline C3N: two-dimensional semiconductors with high thermal conductivity.
    Hong Y, Zhang J, Zeng XC.
    Nanoscale; 2018 Mar 01; 10(9):4301-4310. PubMed ID: 29442106
    [Abstract] [Full Text] [Related]

  • 20. WSe₂ Light-Emitting Tunneling Transistors with Enhanced Brightness at Room Temperature.
    Withers F, Del Pozo-Zamudio O, Schwarz S, Dufferwiel S, Walker PM, Godde T, Rooney AP, Gholinia A, Woods CR, Blake P, Haigh SJ, Watanabe K, Taniguchi T, Aleiner IL, Geim AK, Fal'ko VI, Tartakovskii AI, Novoselov KS.
    Nano Lett; 2015 Dec 09; 15(12):8223-8. PubMed ID: 26555037
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.