These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
101 related items for PubMed ID: 2932071
21. Characterization of cardiac sarcoplasmic reticulum dysfunction during short-term, normothermic, global ischemia. Krause S, Hess ML. Circ Res; 1984 Aug; 55(2):176-84. PubMed ID: 6146409 [Abstract] [Full Text] [Related]
22. The pH dependence of the cardiac sarcolemmal Ca2(+)-transporting ATPase: evidence that the Ca2+ translocator bears a doubly negative charge. Dixon DA, Haynes DH. Biochim Biophys Acta; 1990 Nov 16; 1029(2):274-84. PubMed ID: 2147113 [Abstract] [Full Text] [Related]
23. Mediation of sarcoplasmic reticulum disruption in the ischemic myocardium: proposed mechanism by the interaction of hydrogen ions and oxygen free radicals. Hess ML, Krause S, Kontos HA. Adv Exp Med Biol; 1983 Nov 16; 161():377-89. PubMed ID: 6307008 [Abstract] [Full Text] [Related]
24. Sarco/endoplasmic reticulum Ca2+-ATPase isoforms: diverse responses to acidosis. Wolosker H, Rocha JB, Engelender S, Panizzutti R, De Miranda J, de Meis L. Biochem J; 1997 Jan 15; 321 ( Pt 2)(Pt 2):545-50. PubMed ID: 9020893 [Abstract] [Full Text] [Related]
25. The influence of intracellular pH on contraction, relaxation and [Ca2+]i in intact single fibres from mouse muscle. Westerblad H, Allen DG. J Physiol; 1993 Jul 15; 466():611-28. PubMed ID: 8410709 [Abstract] [Full Text] [Related]
26. [The effect of hypothermia on the Ca2+-pump in sarcoplasmatic reticulum during autolysis of the myocardium]. Brovkovich VM, Iarmysh NV. Ukr Biokhim Zh (1978); 1989 Jul 15; 61(6):58-63. PubMed ID: 2534332 [Abstract] [Full Text] [Related]
27. Coronary artery acidosis: pH and calcium pump stability. Grover AK, Samson SE. Am J Physiol; 1993 Nov 15; 265(5 Pt 2):H1486-92. PubMed ID: 8238559 [Abstract] [Full Text] [Related]
28. Free radical mediation of the effects of acidosis on calcium transport by cardiac sarcoplasmic reticulum in whole heart homogenates. Hess ML, Okabe E, Ash P, Kontos HA. Cardiovasc Res; 1984 Mar 15; 18(3):149-57. PubMed ID: 6322991 [Abstract] [Full Text] [Related]
29. Roussel award for cardiology. The mechanism of nucleotide induced calcium translocation across sarcoplasmic reticulum membranes: evidence for a non-translocated intermediate pool of calcium. Entman ML, Bick R, Chu A, Van Winkle WB, Tate CA. J Mol Cell Cardiol; 1986 Aug 15; 18(8):781-91. PubMed ID: 3018265 [Abstract] [Full Text] [Related]
30. Characterization of free radical-mediated damage of canine cardiac sarcoplasmic reticulum. Okabe E, Hess ML, Oyama M, Ito H. Arch Biochem Biophys; 1983 Aug 15; 225(1):164-77. PubMed ID: 6225392 [Abstract] [Full Text] [Related]
31. Effect of pH on calcium ion dependence of dog cardiac sarcoplasmic reticulum adenosine triphosphatase activity. Grassi de Gende AO, Alonso GL. J Mol Cell Cardiol; 1985 May 15; 17(5):505-9. PubMed ID: 3162033 [Abstract] [Full Text] [Related]
32. Characterization of the effect of pH on the excitation-contraction coupling system of canine masseter muscle. Okabe E, Kohno H, Kato Y, Odajima C, Ito H. Jpn J Pharmacol; 1985 Mar 15; 37(3):277-83. PubMed ID: 3158768 [Abstract] [Full Text] [Related]
33. Effect of pH on the uptake and efflux of calcium from cardiac sarcoplasmic reticulum vesicles [proceedings]. Dunnett J, Nayler WG. J Physiol; 1978 Aug 15; 281():16P-17P. PubMed ID: 29964 [No Abstract] [Full Text] [Related]
34. In vitro effects of palmitylcarnitine on cardiac plasma membrane Na,K-ATPase, and sarcoplasmic reticulum Ca2+-ATPase and Ca2+ transport. Adams RJ, Cohen DW, Gupte S, Johnson JD, Wallick ET, Wang T, Schwartz A. J Biol Chem; 1979 Dec 25; 254(24):12404-10. PubMed ID: 227894 [No Abstract] [Full Text] [Related]
35. [Simultaneous recording of Ca2+ and pH when studying the processes of calcium transport in sarcoplasmic reticulum]. Tugaĭ VA, Usatiuk PV. Ukr Biokhim Zh (1978); 1979 Dec 25; 51(5):508-10. PubMed ID: 42178 [Abstract] [Full Text] [Related]
36. Relationship between H+, anion, and monovalent cation movements and Ca2+ transport in sarcoplasmic reticulum: further proof of a cation exchange mechanism for the Ca2+-Mg2+-ATPase pump. Haynes DH. Arch Biochem Biophys; 1982 May 25; 215(2):444-61. PubMed ID: 6284050 [No Abstract] [Full Text] [Related]
37. Proton and free oxygen radical interaction with the calcium transport system of cardiac sarcoplasmic reticulum. Hess ML, Okabe E, Kontos HA. J Mol Cell Cardiol; 1981 Aug 25; 13(8):767-72. PubMed ID: 6267305 [No Abstract] [Full Text] [Related]
38. Effect of pH on calcium accumulation and release by isolated fragments of cardiac and skeletal muscle sarcoplasmic reticulum. Dunnett J, Nayler WG. Arch Biochem Biophys; 1979 Dec 25; 198(2):434-8. PubMed ID: 42354 [No Abstract] [Full Text] [Related]
39. [Changes in intravesicular pH during Ca2+ transport in the sarcoplasmic reticulum]. Kurskiĭ MD, Tugaĭ VA, Usatiuk PV. Ukr Biokhim Zh (1978); 1986 Dec 25; 58(1):56-62. PubMed ID: 3946018 [Abstract] [Full Text] [Related]
40. Inhibition by free radical scavengers and by cyclooxygenase inhibitors of the effect of acidosis on calcium transport by masseter muscle sarcoplasmic reticulum. Okabe E, Kato Y, Kohno H, Hess ML, Ito H. Biochem Pharmacol; 1985 Apr 01; 34(7):961-8. PubMed ID: 2985087 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]