These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
236 related items for PubMed ID: 29320888
1. Comparative studies with EPR and MRI on the in vivo tissue redox status estimation using redox-sensitive nitroxyl probes: influence of the choice of the region of interest. Matsumoto KI, Mitchell JB, Krishna MC. Free Radic Res; 2018 Feb; 52(2):248-255. PubMed ID: 29320888 [Abstract] [Full Text] [Related]
2. High-resolution mapping of tumor redox status by magnetic resonance imaging using nitroxides as redox-sensitive contrast agents. Matsumoto K, Hyodo F, Matsumoto A, Koretsky AP, Sowers AL, Mitchell JB, Krishna MC. Clin Cancer Res; 2006 Apr 15; 12(8):2455-62. PubMed ID: 16638852 [Abstract] [Full Text] [Related]
3. Redox imaging of skeletal muscle using in vivo DNP-MRI and its application to an animal model of local inflammation. Eto H, Hyodo F, Kosem N, Kobayashi R, Yasukawa K, Nakao M, Kiniwa M, Utsumi H. Free Radic Biol Med; 2015 Dec 15; 89():1097-104. PubMed ID: 26505925 [Abstract] [Full Text] [Related]
4. Utility decay rates of t(1)-weighted magnetic resonance imaging contrast based on redox-sensitive paramagnetic nitroxyl contrast agents. Matsumoto K. Biol Pharm Bull; 2009 Apr 15; 32(4):711-6. PubMed ID: 19336910 [Abstract] [Full Text] [Related]
5. Importance of volume limitation for tissue redox status measurements using nitroxyl contrast agents: a comparison of X-band EPR bile flow monitoring (BFM) method and 300 MHz in vivo EPR measurement. Ui I, Okajo A, Endo K, Utsumi H, Matsumoto K. J Magn Reson; 2006 Jul 15; 181(1):107-12. PubMed ID: 16632393 [Abstract] [Full Text] [Related]
6. Spatially resolved time-course studies of free radical reactions with an EPRI/MRI fusion technique. Hyodo F, Yasukawa K, Yamada K, Utsumi H. Magn Reson Med; 2006 Oct 15; 56(4):938-43. PubMed ID: 16964613 [Abstract] [Full Text] [Related]
9. Radiation-induced redox alteration in the mouse brain. Nakamura M, Yamasaki T, Ueno M, Shibata S, Ozawa Y, Kamada T, Nakanishi I, Yamada KI, Aoki I, Matsumoto KI. Free Radic Biol Med; 2019 Nov 01; 143():412-421. PubMed ID: 31446055 [Abstract] [Full Text] [Related]
12. Nitroxyl Radical as a Theranostic Contrast Agent in Magnetic Resonance Redox Imaging. Matsumoto KI, Nakanishi I, Zhelev Z, Bakalova R, Aoki I. Antioxid Redox Signal; 2022 Jan 01; 36(1-3):95-121. PubMed ID: 34148403 [Abstract] [Full Text] [Related]
15. Feasibility of in vivo three-dimensional T 2* mapping using dicarboxy-PROXYL and CW-EPR-based single-point imaging. Kubota H, Komarov DA, Yasui H, Matsumoto S, Inanami O, Kirilyuk IA, Khramtsov VV, Hirata H. MAGMA; 2017 Jun 01; 30(3):291-298. PubMed ID: 28063096 [Abstract] [Full Text] [Related]
17. Feasibility and assessment of non-invasive in vivo redox status using electron paramagnetic resonance imaging. Yamada KI, Kuppusamy P, English S, Yoo J, Irie A, Subramanian S, Mitchell JB, Krishna MC. Acta Radiol; 2002 Jul 01; 43(4):433-40. PubMed ID: 12225490 [Abstract] [Full Text] [Related]
18. EPR signal reduction kinetic of several nitroxyl derivatives in blood in vitro and in vivo. Zhelev Z, Matsumoto K, Gadjeva V, Bakalova R, Aoki I, Zheleva A, Anzai K. Gen Physiol Biophys; 2009 Dec 01; 28(4):356-62. PubMed ID: 20097958 [Abstract] [Full Text] [Related]