These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


139 related items for PubMed ID: 2932442

  • 41. Catalytic site occupancy during ATP hydrolysis by MF1-ATPase. Evidence for alternating high affinity sites during steady-state turnover.
    Cunningham D, Cross RL.
    J Biol Chem; 1988 Dec 15; 263(35):18850-6. PubMed ID: 2904435
    [Abstract] [Full Text] [Related]

  • 42. Phosphorus Chemistry at the Roots of Bioenergetics: Ligand Permutation as the Molecular Basis of the Mechanism of ATP Synthesis/Hydrolysis by FOF1-ATP Synthase.
    Nath S.
    Molecules; 2023 Nov 08; 28(22):. PubMed ID: 38005208
    [Abstract] [Full Text] [Related]

  • 43. Evidence for catalytic cooperativity during ATP hydrolysis by beef heart F1-ATPase. Kinetics and binding studies with the photoaffinity label BzATP.
    Ackerman SH, Grubmeyer C, Coleman PS.
    J Biol Chem; 1987 Oct 05; 262(28):13765-72. PubMed ID: 2888764
    [Abstract] [Full Text] [Related]

  • 44. Mechanism of ATP hydrolysis by beef heart mitochondrial ATPase. Rate enhancements resulting from cooperative interactions between multiple catalytic sites.
    Cross RL, Grubmeyer C, Penefsky HS.
    J Biol Chem; 1982 Oct 25; 257(20):12101-5. PubMed ID: 6214558
    [No Abstract] [Full Text] [Related]

  • 45. Bound adenosine 5'-triphosphate formation, bound adenosine 5'-diphosphate and inorganic phosphate retention, and inorganic phosphate oxygen exchange by chloroplast adenosinetriphosphatase in the presence of Ca2+ or Mg2+.
    Wu D, Boyer PD.
    Biochemistry; 1986 Jun 03; 25(11):3390-6. PubMed ID: 2873834
    [Abstract] [Full Text] [Related]

  • 46. Subunit interaction during catalysis. Alternating site cooperativity of mitochondrial adenosine triphosphatase.
    Hutton RL, Boyer PD.
    J Biol Chem; 1979 Oct 25; 254(20):9990-3. PubMed ID: 158596
    [Abstract] [Full Text] [Related]

  • 47.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 48. Reversal of oxidative phosphorylation in submitochondrial particles using glucose 6-phosphate and hexokinase as an ATP regenerating system.
    de Meis L, Grieco MA, Galina A.
    FEBS Lett; 1992 Aug 17; 308(2):197-201. PubMed ID: 1499730
    [Abstract] [Full Text] [Related]

  • 49. Inhibition of steady-state mitochondrial ATP synthesis by bicarbonate, an activating anion of ATP hydrolysis.
    Lodeyro AF, Calcaterra NB, Roveri OA.
    Biochim Biophys Acta; 2001 Nov 01; 1506(3):236-43. PubMed ID: 11779557
    [Abstract] [Full Text] [Related]

  • 50. Adenine nucleotide-binding sites on beef heart F1-ATPase. Conditions that affect occupancy of catalytic and noncatalytic sites.
    Kironde FA, Cross RL.
    J Biol Chem; 1986 Sep 25; 261(27):12544-9. PubMed ID: 2875073
    [Abstract] [Full Text] [Related]

  • 51. Determination of the roles of active sites in F1-ATPase by controlled affinity labeling.
    Wu JC, Lin J, Chuan H, Wang JH.
    Biochemistry; 1989 Oct 31; 28(22):8905-11. PubMed ID: 2532546
    [Abstract] [Full Text] [Related]

  • 52. The effect of inorganic pyrophosphate on the activity and Pi-binding properties of mitochondrial F1-ATPase.
    Kalashnikova TYw, Milgrom YM, Murataliev MB.
    Eur J Biochem; 1988 Oct 15; 177(1):213-8. PubMed ID: 2903051
    [Abstract] [Full Text] [Related]

  • 53. Tightly bound nucleotides of the energy-transducing ATPase, and their role in oxidative phosphorylation. II. The beef heart mitochondrial system.
    Harris DA, Radda GK, Slater EC.
    Biochim Biophys Acta; 1977 Mar 11; 459(3):560-72. PubMed ID: 139163
    [Abstract] [Full Text] [Related]

  • 54. Kinetic mechanism of mitochondrial adenosine triphosphatase. ADP-specific inhibition as revealed by the steady-state kinetics.
    Vasilyeva EA, Minkov IB, Fitin AF, Vinogradov AD.
    Biochem J; 1982 Jan 15; 202(1):9-14. PubMed ID: 6211173
    [Abstract] [Full Text] [Related]

  • 55. Covalent modification of the catalytic sites of the H+-ATPase from chloroplasts and 2-nitreno-ADP. Modification of the catalytic site 1 (tight) and catalytic sites 1 and 2 together impairs both uni-site and multi-site catalysis of ATP synthesis and ATP hydrolysis.
    Possmayer FE, Hartog AF, Berden JA, Gräber P.
    Biochim Biophys Acta; 2000 Jul 20; 1459(1):202-17. PubMed ID: 10924912
    [Abstract] [Full Text] [Related]

  • 56. Calcium inhibition of the ATP in equilibrium with [32P]Pi exchange and of net ATP synthesis catalyzed by bovine submitochondrial particles.
    Vercesi AE, Hermes-Lima M, Meyer-Fernandes JR, Vieyra A.
    Biochim Biophys Acta; 1990 Oct 24; 1020(1):101-6. PubMed ID: 2145974
    [Abstract] [Full Text] [Related]

  • 57. Control of beef heart submitochondrial particle-catalyzed Pi goes to and comes from ATP exchange by nucleotides and the ATPase inhibitor protein.
    Krull KW, Schuster SM.
    J Biol Chem; 1981 Jul 10; 256(13):6641-5. PubMed ID: 6453869
    [Abstract] [Full Text] [Related]

  • 58. The native mitochondrial F1-inhibitor protein complex carries out uni- and multisite ATP hydrolysis.
    Vázquez-Laslop N, Dreyfus G.
    J Biol Chem; 1990 Nov 05; 265(31):19002-6. PubMed ID: 2146268
    [Abstract] [Full Text] [Related]

  • 59. Thermal inactivation of electron-transport functions and F0F1-ATPase activities.
    Tomita M, Knox BE, Tsong TY.
    Biochim Biophys Acta; 1987 Oct 29; 894(1):16-28. PubMed ID: 2889470
    [Abstract] [Full Text] [Related]

  • 60. The use of 8-azido-ATP and 8-azido-ADP as photoaffinity labels of the ATP synthase in submitochondrial particles: evidence for a mechanism of ATP hydrolysis involving two independent catalytic sites?
    Sloothaak JB, Berden JA, Herweijer MA, Kemp A.
    Biochim Biophys Acta; 1985 Aug 28; 809(1):27-38. PubMed ID: 2862913
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.