These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1925 related items for PubMed ID: 29330178

  • 1. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.
    Li K, Cai D, Wang Z, He Z, Chen S.
    Appl Environ Microbiol; 2018 Mar 15; 84(6):. PubMed ID: 29330178
    [Abstract] [Full Text] [Related]

  • 2. Development and application of a CRISPR/Cas9 system for Bacillus licheniformis genome editing.
    Zhou C, Liu H, Yuan F, Chai H, Wang H, Liu F, Li Y, Zhang H, Lu F.
    Int J Biol Macromol; 2019 Feb 01; 122():329-337. PubMed ID: 30401651
    [Abstract] [Full Text] [Related]

  • 3. Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis.
    Hong KQ, Liu DY, Chen T, Wang ZW.
    World J Microbiol Biotechnol; 2018 Sep 29; 34(10):153. PubMed ID: 30269229
    [Abstract] [Full Text] [Related]

  • 4. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J.
    Appl Environ Microbiol; 2016 Sep 01; 82(17):5421-7. PubMed ID: 27342565
    [Abstract] [Full Text] [Related]

  • 5. Development of a CRISPR/Cas9 System for Methylococcus capsulatus In Vivo Gene Editing.
    Tapscott T, Guarnieri MT, Henard CA.
    Appl Environ Microbiol; 2019 Jun 01; 85(11):. PubMed ID: 30926729
    [Abstract] [Full Text] [Related]

  • 6. High-level expression of nattokinase in Bacillus licheniformis by manipulating signal peptide and signal peptidase.
    Cai D, Wei X, Qiu Y, Chen Y, Chen J, Wen Z, Chen S.
    J Appl Microbiol; 2016 Sep 01; 121(3):704-12. PubMed ID: 27159567
    [Abstract] [Full Text] [Related]

  • 7. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae.
    Wang Y, Wang S, Chen W, Song L, Zhang Y, Shen Z, Yu F, Li M, Ji Q.
    Appl Environ Microbiol; 2018 Dec 01; 84(23):. PubMed ID: 30217854
    [Abstract] [Full Text] [Related]

  • 8. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J, Wang Y, Lu Y, Zheng P, Sun J, Ma Y.
    Microb Cell Fact; 2017 Nov 16; 16(1):205. PubMed ID: 29145843
    [Abstract] [Full Text] [Related]

  • 9. Development of a CRISPR/Cas9D10A Nickase (nCas9)-Mediated Genome Editing Tool in Streptomyces.
    Ma JX, He WY, Hua HM, Zhu Q, Zheng GS, Zimin AA, Wang WF, Lu YH.
    ACS Synth Biol; 2023 Oct 20; 12(10):3114-3123. PubMed ID: 37722085
    [Abstract] [Full Text] [Related]

  • 10. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System.
    Wang S, Dong S, Wang P, Tao Y, Wang Y.
    Appl Environ Microbiol; 2017 May 15; 83(10):. PubMed ID: 28258147
    [Abstract] [Full Text] [Related]

  • 11. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J, Zhou J, Chen GQ, Xiu ZL.
    J Virol; 2018 Sep 01; 92(17):. PubMed ID: 29899105
    [Abstract] [Full Text] [Related]

  • 12. Efficient genome editing by FACS enrichment of paired D10A Cas9 nickases coupled with fluorescent proteins.
    Gopalappa R, Song M, Chandrasekaran AP, Das S, Haq S, Koh HC, Ramakrishna S.
    Arch Pharm Res; 2018 Sep 01; 41(9):911-920. PubMed ID: 29855892
    [Abstract] [Full Text] [Related]

  • 13. CRISPR-Cas9D10A Nickase-Assisted Genome Editing in Lactobacillus casei.
    Song X, Huang H, Xiong Z, Ai L, Yang S.
    Appl Environ Microbiol; 2017 Nov 15; 83(22):. PubMed ID: 28864652
    [Abstract] [Full Text] [Related]

  • 14. Precise genome-wide base editing by the CRISPR Nickase system in yeast.
    Satomura A, Nishioka R, Mori H, Sato K, Kuroda K, Ueda M.
    Sci Rep; 2017 May 18; 7(1):2095. PubMed ID: 28522803
    [Abstract] [Full Text] [Related]

  • 15. Portable CRISPR-Cas9N System for Flexible Genome Engineering in Lactobacillus acidophilus, Lactobacillus gasseri, and Lactobacillus paracasei.
    Goh YJ, Barrangou R.
    Appl Environ Microbiol; 2021 Feb 26; 87(6):. PubMed ID: 33397707
    [Abstract] [Full Text] [Related]

  • 16. CRISPR-Cpf1-Assisted Multiplex Genome Editing and Transcriptional Repression in Streptomyces.
    Li L, Wei K, Zheng G, Liu X, Chen S, Jiang W, Lu Y.
    Appl Environ Microbiol; 2018 Sep 15; 84(18):. PubMed ID: 29980561
    [Abstract] [Full Text] [Related]

  • 17. Development and application of a fast and efficient CRISPR-based genetic toolkit in Bacillus amyloliquefaciens LB1ba02.
    Xin Q, Chen Y, Chen Q, Wang B, Pan L.
    Microb Cell Fact; 2022 May 28; 21(1):99. PubMed ID: 35643496
    [Abstract] [Full Text] [Related]

  • 18. Efficient Genome Editing in Bacillus licheniformis Mediated by a Conditional CRISPR/Cas9 System.
    Li Y, Wang H, Zhang L, Ding Z, Xu S, Gu Z, Shi G.
    Microorganisms; 2020 May 17; 8(5):. PubMed ID: 32429599
    [Abstract] [Full Text] [Related]

  • 19. Efficient expression of nattokinase in Bacillus licheniformis: host strain construction and signal peptide optimization.
    Wei X, Zhou Y, Chen J, Cai D, Wang D, Qi G, Chen S.
    J Ind Microbiol Biotechnol; 2015 Feb 17; 42(2):287-95. PubMed ID: 25475755
    [Abstract] [Full Text] [Related]

  • 20. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
    Bruder MR, Pyne ME, Moo-Young M, Chung DA, Chou CP.
    Appl Environ Microbiol; 2016 Oct 15; 82(20):6109-6119. PubMed ID: 27496775
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 97.