These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
208 related items for PubMed ID: 29337095
1. Development of native and modified banana starch nanoparticles as vehicles for curcumin. Acevedo-Guevara L, Nieto-Suaza L, Sanchez LT, Pinzon MI, Villa CC. Int J Biol Macromol; 2018 May; 111():498-504. PubMed ID: 29337095 [Abstract] [Full Text] [Related]
2. Citric-acid modified banana starch nanoparticles as a novel vehicle for β-carotene delivery. Santoyo-Aleman D, Sanchez LT, Villa CC. J Sci Food Agric; 2019 Nov; 99(14):6392-6399. PubMed ID: 31283024 [Abstract] [Full Text] [Related]
3. Effect of a novel shell material-Starch-protein-fatty acid ternary nanoparticles on loading levels and in vitro release of curcumin. Zheng D, Huang C, Li B, Zhu X, Liu R, Zhao H. Int J Biol Macromol; 2021 Dec 01; 192():471-478. PubMed ID: 34634332 [Abstract] [Full Text] [Related]
4. Polyelectrolyte Complex Nanoparticles from Chitosan and Acylated Rapeseed Cruciferin Protein for Curcumin Delivery. Wang F, Yang Y, Ju X, Udenigwe CC, He R. J Agric Food Chem; 2018 Mar 21; 66(11):2685-2693. PubMed ID: 29451796 [Abstract] [Full Text] [Related]
5. Effect of crosslinker on drug delivery properties of curcumin loaded starch coated iron oxide nanoparticles. Saikia C, Das MK, Ramteke A, Maji TK. Int J Biol Macromol; 2016 Dec 21; 93(Pt A):1121-1132. PubMed ID: 27664928 [Abstract] [Full Text] [Related]
6. Application of starch nanoparticles as host materials for encapsulation of curcumin: Effect of citric acid modification. Miskeen S, An YS, Kim JY. Int J Biol Macromol; 2021 Jul 31; 183():1-11. PubMed ID: 33901554 [Abstract] [Full Text] [Related]
7. Porous corn starch granules as effective host matrices for encapsulation and sustained release of curcumin and resveratrol. Wahab M, Janaswamy S. Carbohydr Polym; 2024 Jun 01; 333():121967. PubMed ID: 38494222 [Abstract] [Full Text] [Related]
8. Nano-encapsulation of catechin in starch nanoparticles: Characterization, release behavior and bioactivity retention during simulated in-vitro digestion. Ahmad M, Mudgil P, Gani A, Hamed F, Masoodi FA, Maqsood S. Food Chem; 2019 Jan 01; 270():95-104. PubMed ID: 30174096 [Abstract] [Full Text] [Related]
9. Effects of acid-ethanol hydrolysis and debranch on acetylated starch and its potential used for curcumin carrier. Du J, Hong Y, Cheng L, Gu Z, Li Z, Li C. Carbohydr Polym; 2022 Mar 01; 279():119019. PubMed ID: 34980359 [Abstract] [Full Text] [Related]
10. Modified porous starches loading curcumin and improving the free radical scavenging ability and release properties of curcumin. Han X, Ma P, Shen M, Wen H, Xie J. Food Res Int; 2023 Jun 01; 168():112770. PubMed ID: 37120221 [Abstract] [Full Text] [Related]
11. Effect of molecular weight of hyaluronan on zein-based nanoparticles: Fabrication, structural characterization and delivery of curcumin. Chen S, Han Y, Sun C, Dai L, Yang S, Wei Y, Mao L, Yuan F, Gao Y. Carbohydr Polym; 2018 Dec 01; 201():599-607. PubMed ID: 30241858 [Abstract] [Full Text] [Related]
12. Preparation and characterization of acetylated starch nanoparticles as drug carrier: Ciprofloxacin as a model. Mahmoudi Najafi SH, Baghaie M, Ashori A. Int J Biol Macromol; 2016 Jun 01; 87():48-54. PubMed ID: 26893054 [Abstract] [Full Text] [Related]
13. Fabrication of chitosan hydrochloride and carboxymethyl starch complex nanogels as potential delivery vehicles for curcumin. Li XM, Wu ZZ, Zhang B, Pan Y, Meng R, Chen HQ. Food Chem; 2019 Sep 30; 293():197-203. PubMed ID: 31151601 [Abstract] [Full Text] [Related]
14. Emulsion-based delivery systems for curcumin: Encapsulation and interaction mechanism between debranched starch and curcumin. Feng T, Hu Z, Wang K, Zhu X, Chen D, Zhuang H, Yao L, Song S, Wang H, Sun M. Int J Biol Macromol; 2020 Oct 15; 161():746-754. PubMed ID: 32553966 [Abstract] [Full Text] [Related]
15. Preparation and characterization of zein/carboxymethyl dextrin nanoparticles to encapsulate curcumin: Physicochemical stability, antioxidant activity and controlled release properties. Meng R, Wu Z, Xie QT, Cheng JS, Zhang B. Food Chem; 2021 Mar 15; 340():127893. PubMed ID: 32889202 [Abstract] [Full Text] [Related]
16. Determination of the molecular and structural characteristics of okenia, mango, and banana starches. Millan-Testa CE, Mendez-Montealvo MG, Ottenhof MA, Farhat IA, Bello-Pérez LA. J Agric Food Chem; 2005 Feb 09; 53(3):495-501. PubMed ID: 15686392 [Abstract] [Full Text] [Related]
17. Facile microencapsulation of curcumin in acetylated starch microparticles. Nata IF, Chen KJ, Lee CK. J Microencapsul; 2014 Feb 09; 31(4):344-9. PubMed ID: 24697176 [Abstract] [Full Text] [Related]
18. Acetylation of banana (Musa paradisiaca L.) and corn (Zea mays L.) starches using a microwave heating procedure and iodine as catalyst: II. Rheological and structural studies. Sánchez-Rivera MM, Almanza-Benitez S, Bello-Perez LA, Mendez-Montealvo G, Núñez-Santiago MC, Rodriguez-Ambriz SL, Gutierrez-Meráz F. Carbohydr Polym; 2013 Feb 15; 92(2):1256-61. PubMed ID: 23399154 [Abstract] [Full Text] [Related]
19. Fabrication and characterization of size-controlled starch-based nanoparticles as hydrophobic drug carriers. Han F, Gao C, Liu M. J Nanosci Nanotechnol; 2013 Oct 15; 13(10):6996-7007. PubMed ID: 24245176 [Abstract] [Full Text] [Related]
20. Synthesis, characterization, release kinetics and toxicity profile of drug-loaded starch nanoparticles. El-Naggar ME, El-Rafie MH, El-sheikh MA, El-Feky GS, Hebeish A. Int J Biol Macromol; 2015 Nov 15; 81():718-29. PubMed ID: 26358550 [Abstract] [Full Text] [Related] Page: [Next] [New Search]