These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
122 related items for PubMed ID: 29351287
1. A novel association rule mining approach using TID intermediate itemset. Aqra I, Herawan T, Abdul Ghani N, Akhunzada A, Ali A, Bin Razali R, Ilahi M, Raymond Choo KK. PLoS One; 2018; 13(1):e0179703. PubMed ID: 29351287 [Abstract] [Full Text] [Related]
5. Quantifying the informativeness for biomedical literature summarization: An itemset mining method. Moradi M, Ghadiri N. Comput Methods Programs Biomed; 2017 Jul; 146():77-89. PubMed ID: 28688492 [Abstract] [Full Text] [Related]
6. Efficient Top-K Identical Frequent Itemsets Mining without Support Threshold Parameter from Transactional Datasets Produced by IoT-Based Smart Shopping Carts. Rehman SU, Alnazzawi N, Ashraf J, Iqbal J, Khan S. Sensors (Basel); 2022 Oct 21; 22(20):. PubMed ID: 36298424 [Abstract] [Full Text] [Related]
7. Diagnosis of coronary artery disease using an efficient hash table based closed frequent itemsets mining. Dhanaseelan R, Jeya Sutha M. Med Biol Eng Comput; 2018 May 21; 56(5):749-759. PubMed ID: 28905236 [Abstract] [Full Text] [Related]
8. Negative and positive association rules mining from text using frequent and infrequent itemsets. Mahmood S, Shahbaz M, Guergachi A. ScientificWorldJournal; 2014 May 21; 2014():973750. PubMed ID: 24955429 [Abstract] [Full Text] [Related]
10. Parallel and distributed methods for incremental frequent itemset mining. Otey ME, Parthasarathy S, Wang C, Veloso A, Meira W. IEEE Trans Syst Man Cybern B Cybern; 2004 Dec 21; 34(6):2439-50. PubMed ID: 15619944 [Abstract] [Full Text] [Related]
11. TKFIM: Top-K frequent itemset mining technique based on equivalence classes. Iqbal S, Shahid A, Roman M, Khan Z, Al-Otaibi S, Yu L. PeerJ Comput Sci; 2021 Dec 21; 7():e385. PubMed ID: 33817031 [Abstract] [Full Text] [Related]
12. Graph-based biomedical text summarization: An itemset mining and sentence clustering approach. Nasr Azadani M, Ghadiri N, Davoodijam E. J Biomed Inform; 2018 Aug 21; 84():42-58. PubMed ID: 29906584 [Abstract] [Full Text] [Related]
13. IPHM: Incremental periodic high-utility mining algorithm in dynamic and evolving data environments. Huang H, Chen S, Chen J. Heliyon; 2024 Sep 30; 10(18):e37761. PubMed ID: 39328518 [Abstract] [Full Text] [Related]
14. HUIL-TN & HUI-TN: Mining high utility itemsets based on pattern-growth. Wang L, Wang S. PLoS One; 2021 Sep 30; 16(3):e0248349. PubMed ID: 33711048 [Abstract] [Full Text] [Related]
15. Incremental high average-utility itemset mining: survey and challenges. Chen J, Yang S, Ding W, Li P, Liu A, Zhang H, Li T. Sci Rep; 2024 Apr 30; 14(1):9924. PubMed ID: 38688921 [Abstract] [Full Text] [Related]
16. An efficient algorithm for mining closed itemsets. Liu JQ, Pan YH. J Zhejiang Univ Sci; 2004 Jan 30; 5(1):8-15. PubMed ID: 14663846 [Abstract] [Full Text] [Related]
17. Mining Association rules for Low-Frequency itemsets. Wu JM, Zhan J, Chobe S. PLoS One; 2018 Jan 30; 13(7):e0198066. PubMed ID: 30036359 [Abstract] [Full Text] [Related]
18. Rule mining and classification in a situation assessment application: a belief-theoretic approach for handling data imperfections. Rohitha KK, Hewawasam GK, Premaratne K, Shyu ML. IEEE Trans Syst Man Cybern B Cybern; 2007 Dec 30; 37(6):1446-59. PubMed ID: 18179065 [Abstract] [Full Text] [Related]
19. DTFP-Growth: Dynamic Threshold-Based FP-Growth Rule Mining Algorithm Through Integrating Gene Expression, Methylation, and Protein-Protein Interaction Profiles. Mallik S, Bhadra T, Mukherji A, Mallik S, Bhadra T, Mukherji A, Mallik S, Bhadra T, Mukherji A. IEEE Trans Nanobioscience; 2018 Apr 30; 17(2):117-125. PubMed ID: 29870335 [Abstract] [Full Text] [Related]
20. On Differentially Private Frequent Itemset Mining. Zeng C, Naughton JF, Cai JY. VLDB J; 2012 Nov 01; 6(1):25-36. PubMed ID: 24039383 [Abstract] [Full Text] [Related] Page: [Next] [New Search]