These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


249 related items for PubMed ID: 29357445

  • 1. A computational model for how the fast afterhyperpolarization paradoxically increases gain in regularly firing neurons.
    Jaffe DB, Brenner R.
    J Neurophysiol; 2018 Apr 01; 119(4):1506-1520. PubMed ID: 29357445
    [Abstract] [Full Text] [Related]

  • 2. Knockout of the BK β4-subunit promotes a functional coupling of BK channels and ryanodine receptors that mediate a fAHP-induced increase in excitability.
    Wang B, Bugay V, Ling L, Chuang HH, Jaffe DB, Brenner R.
    J Neurophysiol; 2016 Aug 01; 116(2):456-65. PubMed ID: 27146987
    [Abstract] [Full Text] [Related]

  • 3. BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells.
    Gu N, Vervaeke K, Storm JF.
    J Physiol; 2007 May 01; 580(Pt.3):859-82. PubMed ID: 17303637
    [Abstract] [Full Text] [Related]

  • 4. BK Channel Regulation of Afterpotentials and Burst Firing in Cerebellar Purkinje Neurons.
    Niday Z, Bean BP.
    J Neurosci; 2021 Mar 31; 41(13):2854-2869. PubMed ID: 33593855
    [Abstract] [Full Text] [Related]

  • 5. Differential Regulation of Action Potential Shape and Burst-Frequency Firing by BK and Kv2 Channels in Substantia Nigra Dopaminergic Neurons.
    Kimm T, Khaliq ZM, Bean BP.
    J Neurosci; 2015 Dec 16; 35(50):16404-17. PubMed ID: 26674866
    [Abstract] [Full Text] [Related]

  • 6. Characteristics of single large-conductance Ca2+-activated K+ channels and their regulation of action potentials and excitability in parasympathetic cardiac motoneurons in the nucleus ambiguus.
    Lin M, Hatcher JT, Wurster RD, Chen QH, Cheng ZJ.
    Am J Physiol Cell Physiol; 2014 Jan 15; 306(2):C152-66. PubMed ID: 24196530
    [Abstract] [Full Text] [Related]

  • 7. Layer I neurons of rat neocortex. I. Action potential and repetitive firing properties.
    Zhou FM, Hablitz JJ.
    J Neurophysiol; 1996 Aug 15; 76(2):651-67. PubMed ID: 8871189
    [Abstract] [Full Text] [Related]

  • 8. Shaping of action potentials by type I and type II large-conductance Ca²+-activated K+ channels.
    Jaffe DB, Wang B, Brenner R.
    Neuroscience; 2011 Sep 29; 192():205-18. PubMed ID: 21723921
    [Abstract] [Full Text] [Related]

  • 9. Peptidergic counter-regulation of Ca(2+)- and Na(+)-dependent K(+) currents modulates the shape of action potentials in neurosecretory insect neurons.
    Wicher D, Berlau J, Walther C, Borst A.
    J Neurophysiol; 2006 Jan 29; 95(1):311-22. PubMed ID: 16177173
    [Abstract] [Full Text] [Related]

  • 10. Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons.
    Magee JC, Carruth M.
    J Neurophysiol; 1999 Oct 29; 82(4):1895-901. PubMed ID: 10515978
    [Abstract] [Full Text] [Related]

  • 11. Role of multiple calcium and calcium-dependent conductances in regulation of hippocampal dentate granule cell excitability.
    Aradi I, Holmes WR.
    J Comput Neurosci; 1999 Oct 29; 6(3):215-35. PubMed ID: 10406134
    [Abstract] [Full Text] [Related]

  • 12. The role of BK-type Ca2+-dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells.
    Shao LR, Halvorsrud R, Borg-Graham L, Storm JF.
    J Physiol; 1999 Nov 15; 521 Pt 1(Pt 1):135-46. PubMed ID: 10562340
    [Abstract] [Full Text] [Related]

  • 13. Phase-resetting curve determines how BK currents affect neuronal firing.
    Ly C, Melman T, Barth AL, Ermentrout GB.
    J Comput Neurosci; 2011 Apr 15; 30(2):211-23. PubMed ID: 20517708
    [Abstract] [Full Text] [Related]

  • 14. A biophysically detailed computational model of urinary bladder small DRG neuron soma.
    Mandge D, Manchanda R.
    PLoS Comput Biol; 2018 Jul 15; 14(7):e1006293. PubMed ID: 30020934
    [Abstract] [Full Text] [Related]

  • 15. Modulation by the BK accessory β4 subunit of phosphorylation-dependent changes in excitability of dentate gyrus granule neurons.
    Petrik D, Wang B, Brenner R.
    Eur J Neurosci; 2011 Sep 15; 34(5):695-704. PubMed ID: 21848922
    [Abstract] [Full Text] [Related]

  • 16. Afterhyperpolarization mechanisms in cat sympathetic preganglionic neuron in vitro.
    Yoshimura M, Polosa C, Nishi S.
    J Neurophysiol; 1986 Jun 15; 55(6):1234-46. PubMed ID: 3016208
    [Abstract] [Full Text] [Related]

  • 17. Relationship between repetitive firing and afterhyperpolarizations in human neocortical neurons.
    Lorenzon NM, Foehring RC.
    J Neurophysiol; 1992 Feb 15; 67(2):350-63. PubMed ID: 1373765
    [Abstract] [Full Text] [Related]

  • 18. Iberiotoxin-sensitive large conductance Ca2+ -dependent K+ (BK) channels regulate the spike configuration in the burst firing of cerebellar Purkinje neurons.
    Haghdoost-Yazdi H, Janahmadi M, Behzadi G.
    Brain Res; 2008 May 30; 1212():1-8. PubMed ID: 18439989
    [Abstract] [Full Text] [Related]

  • 19. BK potassium currents contribute differently to action potential waveform and firing rate as rat hippocampal neurons mature in the first postnatal week.
    Hunsberger MS, Mynlieff M.
    J Neurophysiol; 2020 Sep 01; 124(3):703-714. PubMed ID: 32727281
    [Abstract] [Full Text] [Related]

  • 20. Afterhyperpolarization current in myenteric neurons of the guinea pig duodenum.
    Vogalis F, Furness JB, Kunze WA.
    J Neurophysiol; 2001 May 01; 85(5):1941-51. PubMed ID: 11353011
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.