These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
249 related items for PubMed ID: 29357445
21. Multiple potassium conductances and their role in action potential repolarization and repetitive firing behavior of neonatal rat hypoglossal motoneurons. Viana F, Bayliss DA, Berger AJ. J Neurophysiol; 1993 Jun; 69(6):2150-63. PubMed ID: 8350136 [Abstract] [Full Text] [Related]
22. Methamphetamine Regulation of Firing Activity of Dopamine Neurons. Lin M, Sambo D, Khoshbouei H. J Neurosci; 2016 Oct 05; 36(40):10376-10391. PubMed ID: 27707972 [Abstract] [Full Text] [Related]
23. Long-term increases in BK potassium channel underlie increased action potential firing in dentate granule neurons following pilocarpine-induced status epilepticus in rats. Mehranfard N, Gholamipour-Badie H, Motamedi F, Janahmadi M, Naderi N. Neurosci Lett; 2015 Jan 12; 585():88-91. PubMed ID: 25434869 [Abstract] [Full Text] [Related]
24. Transient BK outward current enhances motoneurone firing rates during Drosophila larval locomotion. Kadas D, Ryglewski S, Duch C. J Physiol; 2015 Nov 15; 593(22):4871-88. PubMed ID: 26332699 [Abstract] [Full Text] [Related]
25. Computational modeling of spike generation in serotonergic neurons of the dorsal raphe nucleus. Tuckwell HC, Penington NJ. Prog Neurobiol; 2014 Jul 15; 118():59-101. PubMed ID: 24784445 [Abstract] [Full Text] [Related]
26. The BK-mediated fAHP is modulated by learning a hippocampus-dependent task. Matthews EA, Weible AP, Shah S, Disterhoft JF. Proc Natl Acad Sci U S A; 2008 Sep 30; 105(39):15154-9. PubMed ID: 18799739 [Abstract] [Full Text] [Related]
27. Patch-clamp analysis of gene-targeted vomeronasal neurons expressing a defined V1r or V2r receptor: ionic mechanisms underlying persistent firing. Ukhanov K, Leinders-Zufall T, Zufall F. J Neurophysiol; 2007 Oct 30; 98(4):2357-69. PubMed ID: 17715188 [Abstract] [Full Text] [Related]
28. Voltage-gated potassium channels activated during action potentials in layer V neocortical pyramidal neurons. Kang J, Huguenard JR, Prince DA. J Neurophysiol; 2000 Jan 30; 83(1):70-80. PubMed ID: 10634854 [Abstract] [Full Text] [Related]
29. Kv7 and Kir6 Channels Shape the Slow AHP in Mouse Dentate Gyrus Granule Cells and Control Burst-like Firing Behavior. Laker D, Tolle F, Stegen M, Heerdegen M, Köhling R, Kirschstein T, Wolfart J. Neuroscience; 2021 Jul 15; 467():56-72. PubMed ID: 34048798 [Abstract] [Full Text] [Related]
30. Fast rhythmic bursting can be induced in layer 2/3 cortical neurons by enhancing persistent Na+ conductance or by blocking BK channels. Traub RD, Buhl EH, Gloveli T, Whittington MA. J Neurophysiol; 2003 Feb 15; 89(2):909-21. PubMed ID: 12574468 [Abstract] [Full Text] [Related]
31. Contribution of apamin-sensitive SK channels to the firing precision but not to the slow afterhyperpolarization and spike frequency adaptation in snail neurons. Vatanparast J, Janahmadi M. Brain Res; 2009 Feb 19; 1255():57-66. PubMed ID: 19100724 [Abstract] [Full Text] [Related]
32. Multiple potassium conductances and their functions in neurons from cat sensorimotor cortex in vitro. Schwindt PC, Spain WJ, Foehring RC, Stafstrom CE, Chubb MC, Crill WE. J Neurophysiol; 1988 Feb 19; 59(2):424-49. PubMed ID: 3351569 [Abstract] [Full Text] [Related]
33. Large conductance Ca(2+)-activated K+ channels are involved in both spike shaping and firing regulation in Helix neurones. Crest M, Gola M. J Physiol; 1993 Jun 19; 465():265-87. PubMed ID: 8229836 [Abstract] [Full Text] [Related]
34. Medium afterhyperpolarization and firing pattern modulation in interneurons of stratum radiatum in the CA3 hippocampal region. Savić N, Pedarzani P, Sciancalepore M. J Neurophysiol; 2001 May 19; 85(5):1986-97. PubMed ID: 11353015 [Abstract] [Full Text] [Related]
35. Factors affecting slow regular firing in the suprachiasmatic nucleus in vitro. Thomson AM, West DC. J Biol Rhythms; 1990 May 19; 5(1):59-75. PubMed ID: 2133120 [Abstract] [Full Text] [Related]
36. Ionic mechanisms in the generation of subthreshold oscillations and action potential clustering in entorhinal layer II stellate neurons. Fransén E, Alonso AA, Dickson CT, Magistretti J, Hasselmo ME. Hippocampus; 2004 May 19; 14(3):368-84. PubMed ID: 15132436 [Abstract] [Full Text] [Related]
37. Properties and ionic basis of the action potentials in the periaqueductal grey neurones of the guinea-pig. Sánchez D, Ribas J. J Physiol; 1991 May 19; 440():167-87. PubMed ID: 1804959 [Abstract] [Full Text] [Related]
38. Reconstruction of hippocampal CA1 pyramidal cell electrophysiology by computer simulation. Warman EN, Durand DM, Yuen GL. J Neurophysiol; 1994 Jun 19; 71(6):2033-45. PubMed ID: 7523610 [Abstract] [Full Text] [Related]
39. Differential effect of D623N variant and wild-type Na(v)1.7 sodium channels on resting potential and interspike membrane potential of dorsal root ganglion neurons. Ahn HS, Vasylyev DV, Estacion M, Macala LJ, Shah P, Faber CG, Merkies IS, Dib-Hajj SD, Waxman SG. Brain Res; 2013 Sep 05; 1529():165-77. PubMed ID: 23850641 [Abstract] [Full Text] [Related]
40. Regulation of excitability in tonic firing substantia gelatinosa neurons of the spinal cord by small-conductance Ca(2+)-activated K(+) channels. Yang K. Neuropharmacology; 2016 Jun 05; 105():15-24. PubMed ID: 26777279 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]