These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
642 related items for PubMed ID: 29359658
1. Improving Xylose Utilization of Saccharomyces cerevisiae by Expressing the MIG1 Mutant from the Self-Flocculating Yeast SPSC01. Xu JR, Zhao XQ, Liu CG, Bai FW. Protein Pept Lett; 2018; 25(2):202-207. PubMed ID: 29359658 [Abstract] [Full Text] [Related]
2. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. Lee SH, Kodaki T, Park YC, Seo JH. J Biotechnol; 2012 Apr 30; 158(4):184-91. PubMed ID: 21699927 [Abstract] [Full Text] [Related]
3. Metabolic pathway analysis of the xylose-metabolizing yeast protoplast fusant ZLYRHZ7. Ge J, Du R, Song G, Zhang Y, Ping W. J Biosci Bioeng; 2017 Oct 30; 124(4):386-391. PubMed ID: 28527826 [Abstract] [Full Text] [Related]
4. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. Zhang GC, Turner TL, Jin YS. J Ind Microbiol Biotechnol; 2017 Mar 30; 44(3):387-395. PubMed ID: 28070721 [Abstract] [Full Text] [Related]
5. Analysis and prediction of the physiological effects of altered coenzyme specificity in xylose reductase and xylitol dehydrogenase during xylose fermentation by Saccharomyces cerevisiae. Krahulec S, Klimacek M, Nidetzky B. J Biotechnol; 2012 Apr 30; 158(4):192-202. PubMed ID: 21903144 [Abstract] [Full Text] [Related]
6. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Krahulec S, Klimacek M, Nidetzky B. Biotechnol J; 2009 May 30; 4(5):684-94. PubMed ID: 19452479 [Abstract] [Full Text] [Related]
8. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Krahulec S, Petschacher B, Wallner M, Longus K, Klimacek M, Nidetzky B. Microb Cell Fact; 2010 Mar 10; 9():16. PubMed ID: 20219100 [Abstract] [Full Text] [Related]
9. A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation. Bera AK, Ho NW, Khan A, Sedlak M. J Ind Microbiol Biotechnol; 2011 May 10; 38(5):617-26. PubMed ID: 20714780 [Abstract] [Full Text] [Related]
10. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Matsushika A, Watanabe S, Kodaki T, Makino K, Inoue H, Murakami K, Takimura O, Sawayama S. Appl Microbiol Biotechnol; 2008 Nov 10; 81(2):243-55. PubMed ID: 18751695 [Abstract] [Full Text] [Related]
11. Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Johansson B, Christensson C, Hobley T, Hahn-Hägerdal B. Appl Environ Microbiol; 2001 Sep 10; 67(9):4249-55. PubMed ID: 11526030 [Abstract] [Full Text] [Related]
12. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Karhumaa K, Fromanger R, Hahn-Hägerdal B, Gorwa-Grauslund MF. Appl Microbiol Biotechnol; 2007 Jan 10; 73(5):1039-46. PubMed ID: 16977466 [Abstract] [Full Text] [Related]
13. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Toivari MH, Aristidou A, Ruohonen L, Penttilä M. Metab Eng; 2001 Jul 10; 3(3):236-49. PubMed ID: 11461146 [Abstract] [Full Text] [Related]
14. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase. Matsushika A, Sawayama S. Enzyme Microb Technol; 2011 May 06; 48(6-7):466-71. PubMed ID: 22113018 [Abstract] [Full Text] [Related]
15. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis. Kim SR, Kwee NR, Kim H, Jin YS. FEMS Yeast Res; 2013 May 06; 13(3):312-21. PubMed ID: 23398717 [Abstract] [Full Text] [Related]
17. An improved method of xylose utilization by recombinant Saccharomyces cerevisiae. Ma TY, Lin TH, Hsu TC, Huang CF, Guo GL, Hwang WS. J Ind Microbiol Biotechnol; 2012 Oct 06; 39(10):1477-86. PubMed ID: 22740288 [Abstract] [Full Text] [Related]
18. [Effect of MIG1 and SNF1 deletion on simultaneous utilization of glucose and xylose by Saccharomyces cerevisiae]. Cai Y, Qi X, Qi Q, Lin Y, Wang Z, Wang Q. Sheng Wu Gong Cheng Xue Bao; 2018 Jan 25; 34(1):54-67. PubMed ID: 29380571 [Abstract] [Full Text] [Related]
19. Expression of bifunctional enzymes with xylose reductase and xylitol dehydrogenase activity in Saccharomyces cerevisiae alters product formation during xylose fermentation. Anderlund M, Rådström P, Hahn-Hägerdal B. Metab Eng; 2001 Jul 25; 3(3):226-35. PubMed ID: 11461145 [Abstract] [Full Text] [Related]
20. Different transcriptional responses of haploid and diploid S. cerevisiae strains to changes in cofactor preference of XR. Xie CY, Yang BX, Song QR, Xia ZY, Gou M, Tang YQ. Microb Cell Fact; 2020 Nov 13; 19(1):211. PubMed ID: 33187525 [Abstract] [Full Text] [Related] Page: [Next] [New Search]