These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


394 related items for PubMed ID: 29363423

  • 1. InfAcrOnt: calculating cross-ontology term similarities using information flow by a random walk.
    Cheng L, Jiang Y, Ju H, Sun J, Peng J, Zhou M, Hu Y.
    BMC Genomics; 2018 Jan 19; 19(Suppl 1):919. PubMed ID: 29363423
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Inferring gene ontologies from pairwise similarity data.
    Kramer M, Dutkowski J, Yu M, Bafna V, Ideker T.
    Bioinformatics; 2014 Jun 15; 30(12):i34-42. PubMed ID: 24932003
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Protein-protein interaction inference based on semantic similarity of Gene Ontology terms.
    Zhang SB, Tang QR.
    J Theor Biol; 2016 Jul 21; 401():30-7. PubMed ID: 27117309
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Integrating Information in Biological Ontologies and Molecular Networks to Infer Novel Terms.
    Li L, Yip KY.
    Sci Rep; 2016 Dec 15; 6():39237. PubMed ID: 27976738
    [Abstract] [Full Text] [Related]

  • 8. Transfer learning across ontologies for phenome-genome association prediction.
    Petegrosso R, Park S, Hwang TH, Kuang R.
    Bioinformatics; 2017 Feb 15; 33(4):529-536. PubMed ID: 27797759
    [Abstract] [Full Text] [Related]

  • 9. Matching biomedical ontologies with GCN-based feature propagation.
    Wang P, Zou S, Liu J, Ke W.
    Math Biosci Eng; 2022 Jun 09; 19(8):8479-8504. PubMed ID: 35801474
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Gene Ontology Enrichment Improves Performances of Functional Similarity of Genes.
    Liu W, Liu J, Rajapakse JC.
    Sci Rep; 2018 Aug 14; 8(1):12100. PubMed ID: 30108262
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Integration of molecular network data reconstructs Gene Ontology.
    Gligorijević V, Janjić V, Pržulj N.
    Bioinformatics; 2014 Sep 01; 30(17):i594-600. PubMed ID: 25161252
    [Abstract] [Full Text] [Related]

  • 18. Bi-directional semantic similarity for gene ontology to optimize biological and clinical analyses.
    Bien SJ, Park CH, Shim HJ, Yang W, Kim J, Kim JH.
    J Am Med Inform Assoc; 2012 Sep 01; 19(5):765-74. PubMed ID: 22374934
    [Abstract] [Full Text] [Related]

  • 19. Annotating Diseases Using Human Phenotype Ontology Improves Prediction of Disease-Associated Long Non-coding RNAs.
    Le DH, Dao LTM.
    J Mol Biol; 2018 Jul 20; 430(15):2219-2230. PubMed ID: 29758261
    [Abstract] [Full Text] [Related]

  • 20. Extracting Cross-Ontology Weighted Association Rules from Gene Ontology Annotations.
    Agapito G, Milano M, Guzzi PH, Cannataro M.
    IEEE/ACM Trans Comput Biol Bioinform; 2016 Jul 20; 13(2):197-208. PubMed ID: 27045823
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.