These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


217 related items for PubMed ID: 29363720

  • 1. Antitumor effects of Tubeimoside-1 in NCI-H1299 cells are mediated by microRNA-126-5p-induced inactivation of VEGF-A/VEGFR-2/ERK signaling pathway.
    Shi H, Bi H, Sun X, Dong H, Jiang Y, Mu H, Liu G, Kong W, Gao R, Su J.
    Mol Med Rep; 2018 Mar; 17(3):4327-4336. PubMed ID: 29363720
    [Abstract] [Full Text] [Related]

  • 2. Tubeimoside-1 inhibits proliferation and induces apoptosis by increasing the Bax to Bcl-2 ratio and decreasing COX-2 expression in lung cancer A549 cells.
    Zhang Y, Xu X, He P.
    Mol Med Rep; 2011 Mar; 4(1):25-9. PubMed ID: 21461558
    [Abstract] [Full Text] [Related]

  • 3. Tubeimoside-1 inhibits the proliferation and metastasis by promoting miR-126-5p expression in non-small cell lung cancer cells.
    Shi H, Bi H, Sun X, Dong H, Jiang Y, Mu H, Li W, Liu G, Gao R, Su J.
    Oncol Lett; 2018 Sep; 16(3):3126-3134. PubMed ID: 30127904
    [Abstract] [Full Text] [Related]

  • 4. Tubeimoside-1 (TBMS1) inhibits lung cancer cell growth and induces cells apoptosis through activation of MAPK-JNK pathway.
    Hao W, Wang S, Zhou Z.
    Int J Clin Exp Pathol; 2015 Sep; 8(10):12075-83. PubMed ID: 26722392
    [Abstract] [Full Text] [Related]

  • 5. Cytotoxicity of tubeimoside I in human choriocarcinoma JEG-3 cells by induction of cytochrome c release and apoptosis via the mitochondrial-related signaling pathway.
    Huang P, Yu C, Liu XQ, Ding YB, Wang YX, He JL.
    Int J Mol Med; 2011 Oct; 28(4):579-87. PubMed ID: 21687933
    [Abstract] [Full Text] [Related]

  • 6. Tubeimoside-1 induces oxidative stress-mediated apoptosis and G0/G1 phase arrest in human prostate carcinoma cells in vitro.
    Yang JB, Khan M, He YY, Yao M, Li YM, Gao HW, Ma TH.
    Acta Pharmacol Sin; 2016 Jul; 37(7):950-62. PubMed ID: 27292614
    [Abstract] [Full Text] [Related]

  • 7. Tubeimoside-1, a triterpenoid saponin, induces cytoprotective autophagy in human breast cancer cells in vitro via Akt-mediated pathway.
    Jiang SL, Guan YD, Chen XS, Ge P, Wang XL, Lao YZ, Xiao SS, Zhang Y, Yang JM, Xu XJ, Cao DS, Cheng Y.
    Acta Pharmacol Sin; 2019 Jul; 40(7):919-928. PubMed ID: 30315250
    [Abstract] [Full Text] [Related]

  • 8. Tubeimoside‑1 induces apoptosis in human glioma U251 cells by suppressing PI3K/Akt‑mediated signaling pathways.
    Cao LJ, Xie HT, Chu ZX, Ma Y, Wang MM, Shi Z.
    Mol Med Rep; 2020 Aug; 22(2):1527-1535. PubMed ID: 32627020
    [Abstract] [Full Text] [Related]

  • 9. Multiple pathways were involved in tubeimoside-1-induced cytotoxicity of HeLa cells.
    Xu Y, Ching YP, Zhou Y, Chiu JF, Chen F, He QY.
    J Proteomics; 2011 Dec 21; 75(2):491-501. PubMed ID: 21903181
    [Abstract] [Full Text] [Related]

  • 10. Tubeimoside-1 inhibits the growth and invasion of colorectal cancer cells through the Wnt/β-catenin signaling pathway.
    Bian Q, Liu P, Gu J, Song B.
    Int J Clin Exp Pathol; 2015 Dec 21; 8(10):12517-24. PubMed ID: 26722439
    [Abstract] [Full Text] [Related]

  • 11. Tubeimoside-1 exerts cytotoxicity in HeLa cells through mitochondrial dysfunction and endoplasmic reticulum stress pathways.
    Xu Y, Chiu JF, He QY, Chen F.
    J Proteome Res; 2009 Mar 21; 8(3):1585-93. PubMed ID: 19215086
    [Abstract] [Full Text] [Related]

  • 12. Role of mitochondria and mitochondrial cytochrome c in tubeimoside I-mediated apoptosis of human cervical carcinoma HeLa cell line.
    Wang F, Ma R, Yu L.
    Cancer Chemother Pharmacol; 2006 Feb 21; 57(3):389-99. PubMed ID: 16172906
    [Abstract] [Full Text] [Related]

  • 13. Effect of microRNA-135a on Cell Proliferation, Migration, Invasion, Apoptosis and Tumor Angiogenesis Through the IGF-1/PI3K/Akt Signaling Pathway in Non-Small Cell Lung Cancer.
    Zhou Y, Li S, Li J, Wang D, Li Q.
    Cell Physiol Biochem; 2017 Feb 21; 42(4):1431-1446. PubMed ID: 28715819
    [Abstract] [Full Text] [Related]

  • 14. Tubeimoside-1 induces G2/M phase arrest and apoptosis in SKOV-3 cells through increase of intracellular Ca²⁺ and caspase-dependent signaling pathways.
    Chen WJ, Yu C, Yang Z, He JL, Yin J, Liu HZ, Liu HT, Wang YX.
    Int J Oncol; 2012 Feb 21; 40(2):535-43. PubMed ID: 21971569
    [Abstract] [Full Text] [Related]

  • 15. Anti-microtubule activity of tubeimoside I and its colchicine binding site of tubulin.
    Ma R, Song G, You W, Yu L, Su W, Liao M, Zhang Y, Huang L, Zhang X, Yu T.
    Cancer Chemother Pharmacol; 2008 Sep 21; 62(4):559-68. PubMed ID: 18030471
    [Abstract] [Full Text] [Related]

  • 16. Tubeimoside-1 suppresses tumor angiogenesis by stimulation of proteasomal VEGFR2 and Tie2 degradation in a non-small cell lung cancer xenograft model.
    Gu Y, Körbel C, Scheuer C, Nenicu A, Menger MD, Laschke MW.
    Oncotarget; 2016 Feb 02; 7(5):5258-72. PubMed ID: 26701724
    [Abstract] [Full Text] [Related]

  • 17. ACE2 inhibits breast cancer angiogenesis via suppressing the VEGFa/VEGFR2/ERK pathway.
    Zhang Q, Lu S, Li T, Yu L, Zhang Y, Zeng H, Qian X, Bi J, Lin Y.
    J Exp Clin Cancer Res; 2019 Apr 25; 38(1):173. PubMed ID: 31023337
    [Abstract] [Full Text] [Related]

  • 18. Introduction of exogenous wild‑type p53 mediates the regulation of oncoprotein 18/stathmin signaling via nuclear factor‑κB in non‑small cell lung cancer NCI‑H1299 cells.
    Chen S, Zhao Y, Shen F, Long D, Yu T, Lin X.
    Oncol Rep; 2019 Mar 25; 41(3):2051-2059. PubMed ID: 30628717
    [Abstract] [Full Text] [Related]

  • 19. Sirtuin 7 promotes non‑small cell lung cancer progression by facilitating G1/S phase and epithelial‑mesenchymal transition and activating AKT and ERK1/2 signaling.
    Zhao Y, Ye X, Chen R, Gao Q, Zhao D, Ling C, Qian Y, Xu C, Tao M, Xie Y.
    Oncol Rep; 2020 Sep 25; 44(3):959-972. PubMed ID: 32705247
    [Abstract] [Full Text] [Related]

  • 20. Tubeimoside I sensitizes cisplatin in cisplatin-resistant human ovarian cancer cells (A2780/DDP) through down-regulation of ERK and up-regulation of p38 signaling pathways.
    Liu HZ, Yu C, Yang Z, He JL, Chen WJ, Yin J, Li WM, Liu HT, Wang YX.
    Mol Med Rep; 2011 Sep 25; 4(5):985-92. PubMed ID: 21687949
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.