These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
296 related items for PubMed ID: 29364524
1. OsMADS57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice. Chen L, Zhao Y, Xu S, Zhang Z, Xu Y, Zhang J, Chong K. New Phytol; 2018 Apr; 218(1):219-231. PubMed ID: 29364524 [Abstract] [Full Text] [Related]
2. The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Guo S, Xu Y, Liu H, Mao Z, Zhang C, Ma Y, Zhang Q, Meng Z, Chong K. Nat Commun; 2013 Apr; 4():1566. PubMed ID: 23463009 [Abstract] [Full Text] [Related]
3. Transcriptional activation and phosphorylation of OsCNGC9 confer enhanced chilling tolerance in rice. Wang J, Ren Y, Liu X, Luo S, Zhang X, Liu X, Lin Q, Zhu S, Wan H, Yang Y, Zhang Y, Lei B, Zhou C, Pan T, Wang Y, Wu M, Jing R, Xu Y, Han M, Wu F, Lei C, Guo X, Cheng Z, Zheng X, Wang Y, Zhao Z, Jiang L, Zhang X, Wang YF, Wang H, Wan J. Mol Plant; 2021 Feb 01; 14(2):315-329. PubMed ID: 33278597 [Abstract] [Full Text] [Related]
4. A rice transcription factor, OsMADS57, positively regulates high salinity tolerance in transgenic Arabidopsis thaliana and Oryza sativa plants. Wu J, Yu C, Huang L, Gan Y. Physiol Plant; 2021 Nov 01; 173(3):1120-1135. PubMed ID: 34287928 [Abstract] [Full Text] [Related]
5. Comparative metabolomic analysis reveals a reactive oxygen species-dominated dynamic model underlying chilling environment adaptation and tolerance in rice. Zhang J, Luo W, Zhao Y, Xu Y, Song S, Chong K. New Phytol; 2016 Sep 01; 211(4):1295-310. PubMed ID: 27198693 [Abstract] [Full Text] [Related]
6. OsGRF6 interacts with SLR1 to regulate OsGA2ox1 expression for coordinating chilling tolerance and growth in rice. Li Z, Wang B, Zhang Z, Luo W, Tang Y, Niu Y, Chong K, Xu Y. J Plant Physiol; 2021 May 01; 260():153406. PubMed ID: 33756268 [Abstract] [Full Text] [Related]
7. A Transcription Factor, OsMADS57, Regulates Long-Distance Nitrate Transport and Root Elongation. Huang S, Liang Z, Chen S, Sun H, Fan X, Wang C, Xu G, Zhang Y. Plant Physiol; 2019 Jun 01; 180(2):882-895. PubMed ID: 30886113 [Abstract] [Full Text] [Related]
8. Global expression profiling of low temperature induced genes in the chilling tolerant japonica rice Jumli Marshi. Chawade A, Lindlöf A, Olsson B, Olsson O. PLoS One; 2013 Jun 01; 8(12):e81729. PubMed ID: 24349120 [Abstract] [Full Text] [Related]
9. Genes, pathways and transcription factors involved in seedling stage chilling stress tolerance in indica rice through RNA-Seq analysis. Pradhan SK, Pandit E, Nayak DK, Behera L, Mohapatra T. BMC Plant Biol; 2019 Aug 14; 19(1):352. PubMed ID: 31412781 [Abstract] [Full Text] [Related]
10. Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Ma Q, Dai X, Xu Y, Guo J, Liu Y, Chen N, Xiao J, Zhang D, Xu Z, Zhang X, Chong K. Plant Physiol; 2009 May 14; 150(1):244-56. PubMed ID: 19279197 [Abstract] [Full Text] [Related]
11. New insights into the genetic basis of natural chilling and cold shock tolerance in rice by genome-wide association analysis. Lv Y, Guo Z, Li X, Ye H, Li X, Xiong L. Plant Cell Environ; 2016 Mar 14; 39(3):556-70. PubMed ID: 26381647 [Abstract] [Full Text] [Related]
12. Natural variation in the HAN1 gene confers chilling tolerance in rice and allowed adaptation to a temperate climate. Mao D, Xin Y, Tan Y, Hu X, Bai J, Liu ZY, Yu Y, Li L, Peng C, Fan T, Zhu Y, Guo YL, Wang S, Lu D, Xing Y, Yuan L, Chen C. Proc Natl Acad Sci U S A; 2019 Feb 26; 116(9):3494-3501. PubMed ID: 30808744 [Abstract] [Full Text] [Related]
13. The calcium-dependent kinase OsCPK24 functions in cold stress responses in rice. Liu Y, Xu C, Zhu Y, Zhang L, Chen T, Zhou F, Chen H, Lin Y. J Integr Plant Biol; 2018 Feb 26; 60(2):173-188. PubMed ID: 29193704 [Abstract] [Full Text] [Related]
14. Coordination of light, circadian clock with temperature: The potential mechanisms regulating chilling tolerance in rice. Lu X, Zhou Y, Fan F, Peng J, Zhang J. J Integr Plant Biol; 2020 Jun 26; 62(6):737-760. PubMed ID: 31243851 [Abstract] [Full Text] [Related]
15. Overexpression of Lsi1 in cold-sensitive rice mediates transcriptional regulatory networks and enhances resistance to chilling stress. Fang C, Zhang P, Jian X, Chen W, Lin H, Li Y, Lin W. Plant Sci; 2017 Sep 26; 262():115-126. PubMed ID: 28716407 [Abstract] [Full Text] [Related]
16. An AP2/ERF transcription factor confers chilling tolerance in rice. Xu L, Yang L, Li A, Guo J, Wang H, Qi H, Li M, Yang P, Song S. Sci Adv; 2024 Aug 30; 10(35):eado4788. PubMed ID: 39196924 [Abstract] [Full Text] [Related]
17. Cooling water before panicle initiation increases chilling-induced male sterility and disables chilling-induced expression of genes encoding OsFKBP65 and heat shock proteins in rice spikelets. Suzuki K, Aoki N, Matsumura H, Okamura M, Ohsugi R, Shimono H. Plant Cell Environ; 2015 Jul 30; 38(7):1255-74. PubMed ID: 25496090 [Abstract] [Full Text] [Related]
19. Histone deacetylase OsHDA716 represses rice chilling tolerance by deacetylating OsbZIP46 to reduce its transactivation function and protein stability. Sun Y, Xie Z, Jin L, Qin T, Zhan C, Huang J. Plant Cell; 2024 May 01; 36(5):1913-1936. PubMed ID: 38242836 [Abstract] [Full Text] [Related]
20. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance. Huang L, Hong Y, Zhang H, Li D, Song F. BMC Plant Biol; 2016 Sep 20; 16(1):203. PubMed ID: 27646344 [Abstract] [Full Text] [Related] Page: [Next] [New Search]