These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1032 related items for PubMed ID: 29369742
1. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer. Montoye AHK, Westgate BS, Fonley MR, Pfeiffer KA. J Appl Physiol (1985); 2018 May 01; 124(5):1284-1293. PubMed ID: 29369742 [Abstract] [Full Text] [Related]
2. Field evaluation of a random forest activity classifier for wrist-worn accelerometer data. Pavey TG, Gilson ND, Gomersall SR, Clark B, Trost SG. J Sci Med Sport; 2017 Jan 01; 20(1):75-80. PubMed ID: 27372275 [Abstract] [Full Text] [Related]
3. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers. Ellis K, Kerr J, Godbole S, Lanckriet G, Wing D, Marshall S. Physiol Meas; 2014 Nov 01; 35(11):2191-203. PubMed ID: 25340969 [Abstract] [Full Text] [Related]
11. Age Differences in Estimating Physical Activity by Wrist Accelerometry Using Machine Learning. Mardini MT, Bai C, Wanigatunga AA, Saldana S, Casanova R, Manini TM. Sensors (Basel); 2021 May 12; 21(10):. PubMed ID: 34065906 [Abstract] [Full Text] [Related]
12. AccNet24: A deep learning framework for classifying 24-hour activity behaviours from wrist-worn accelerometer data under free-living environments. Farrahi V, Muhammad U, Rostami M, Oussalah M. Int J Med Inform; 2023 Apr 12; 172():105004. PubMed ID: 36724729 [Abstract] [Full Text] [Related]
14. Energy Expenditure Prediction Using Raw Accelerometer Data in Simulated Free Living. Montoye AH, Mudd LM, Biswas S, Pfeiffer KA. Med Sci Sports Exerc; 2015 Aug 05; 47(8):1735-46. PubMed ID: 25494392 [Abstract] [Full Text] [Related]
15. Ngram time series model to predict activity type and energy cost from wrist, hip and ankle accelerometers: implications of age. Strath SJ, Kate RJ, Keenan KG, Welch WA, Swartz AM. Physiol Meas; 2015 Nov 05; 36(11):2335-51. PubMed ID: 26449155 [Abstract] [Full Text] [Related]
16. Performance of thigh-mounted triaxial accelerometer algorithms in objective quantification of sedentary behaviour and physical activity in older adults. Wullems JA, Verschueren SMP, Degens H, Morse CI, Onambélé GL. PLoS One; 2017 Nov 05; 12(11):e0188215. PubMed ID: 29155839 [Abstract] [Full Text] [Related]
17. Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification. Ellis K, Kerr J, Godbole S, Staudenmayer J, Lanckriet G. Med Sci Sports Exerc; 2016 May 05; 48(5):933-40. PubMed ID: 26673126 [Abstract] [Full Text] [Related]
18. Machine learning to quantify habitual physical activity in children with cerebral palsy. Goodlich BI, Armstrong EL, Horan SA, Baque E, Carty CP, Ahmadi MN, Trost SG. Dev Med Child Neurol; 2020 Sep 05; 62(9):1054-1060. PubMed ID: 32420632 [Abstract] [Full Text] [Related]
19. Validation and Comparison of Accelerometers Worn on the Hip, Thigh, and Wrists for Measuring Physical Activity and Sedentary Behavior. Montoye AHK, Pivarnik JM, Mudd LM, Biswas S, Pfeiffer KA. AIMS Public Health; 2016 Sep 05; 3(2):298-312. PubMed ID: 29546164 [Abstract] [Full Text] [Related]
20. A Dual-Accelerometer System for Detecting Human Movement in a Free-living Environment. Narayanan A, Stewart T, Mackay L. Med Sci Sports Exerc; 2020 Jan 05; 52(1):252-258. PubMed ID: 31361712 [Abstract] [Full Text] [Related] Page: [Next] [New Search]